Меню

Как найти высоту треугольника через координаты вершин треугольника



Уравнение высоты треугольника

Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Написать уравнения высот треугольника.

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

Таким образом, уравнение прямой BC —

Угловой коэффициент прямой, перпендикулярной BC,

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

Итак, уравнение высоты, проведённой к стороне BC:

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

Угловой коэффициент перпендикулярной ей прямой

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

Угловой коэффициент прямой, перпендикулярной AC,

Таким образом, уравнение перпендикулярной AC прямой имеет вид

Подставив в него координаты точки B(5;-3), найдём b:

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

Источник статьи: http://www.treugolniki.ru/uravnenie-vysoty-treugolnika/

Уравнение высоты ch треугольника abc

2 уравнение высоты Ch
3 уравнение медианы am
4 точку n пересечения медианы am и высоты Ch
5 уравнение прямой, проходящей через вершину C параллельно стороне ab
6 расстояние от точки c до прямой ab

Координаты вершин : A(-1;-4) B(9;6); C(-5;4)

  • Попроси больше объяснений
  • Следить
  • Отметить нарушение

Что ты хочешь узнать?

Ответ

Проверено экспертом

1) У равнение стороны АВ:
, после сокращения на 10 получаем каноническое уравнение:

В общем виде х-у-3 = 0.
В виде уравнения с коэффициентом у = х-3.

2) уравнение высоты Ch.
(Х-Хс)/(Ув-Уа) = (У-Ус)/( Ха-Хв).
Подставив координаты вершин, получаем:
х + у + 1 = 0, или
у = -х — 1.

3) уравнение медианы am.
(Х-Ха)/(Ха1-Ха ) = (У-Уа)/( Уа1-Уа).
Основание медианы Am (Ха1;Уа1)= ((Хв+Хс)/2; (Ув+Ус)/ 2) =
= ((9-5)/2=2; (6+4)/2=5) = (2;5).
Получаем уравнение Am:
Можно сократить на 3:

4) Точка n пересечения медианы Аm и высоты Ch.
Приравниваем y = 3x — 1 и у = -х — 1.
4х = 0,
х = 0, у = -1.

5) уравнение прямой, проходящей через вершину C параллельно стороне AB.
(Х-Хс)/( Хв-Ха) = (У-Ус)/( Ув-Уа).
х — у + 9 = 0,
у = х + 9.

6) расстояние от точки С до прямой АВ.
Это высота на сторону АВ.
h = 2S/AB.
Находим стороны треугольника:
АВ = √((Хв-Ха)²+(Ув-Уа)²) = √200 ≈ 14.14213562,
BC = √((Хc-Хв)²+(Ус-Ув)²) = √200 ≈ 14.14213562,
AC = √((Хc-Хa)²+(Ус-Уa)²) = √80 ≈ 8.94427191.
Площадь находим по формуле Герона:
S = 60.
h = 2*60/√200 = 8 .485281.

Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Написать уравнения высот треугольника.

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

Таким образом, уравнение прямой BC —

Угловой коэффициент прямой, перпендикулярной BC,

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

Итак, уравнение высоты, проведённой к стороне BC:

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

Угловой коэффициент перпендикулярной ей прямой

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

Угловой коэффициент прямой, перпендикулярной AC,

Таким образом, уравнение перпендикулярной AC прямой имеет вид

Подставив в него координаты точки B(5;-3), найдём b:

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

г) точку пересечения медианы AM и высоты CH;

д) уравнение прямой, проходящей через вершину С параллельно стороне AB;

Источник статьи: http://dj-sensor.ru/uravnenie-vysoty-ch-treugolnika-abc/

Уравнение высоты треугольника по координатам формула

Как составить уравнение высоты треугольника по координатам его вершин?

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону.

Следовательно, для составления уравнения высоты треугольника нужно:

  1. Найти уравнение стороны треугольника.
  2. Составить уравнение прямой, перпендикулярной этой стороне и проходящей через противолежащую вершину треугольника.

Написать уравнения высот треугольника.

1) Составим уравнение стороны BC треугольника ABC.

Прямая y=kx+b проходит через точки B(5;-3), C(1;8), значит, координаты этих точек удовлетворяют уравнению прямой. Подставив координаты B и C в уравнение прямой, составляем систему уравнений и решаем её:

Таким образом, уравнение прямой BC —

Угловой коэффициент прямой, перпендикулярной BC,

Значит, уравнение высоты, проведённой к стороне BC, имеет вид

Поскольку эта прямая проходит через точку A(-7;2), подставляем координаты точки в уравнение и находим b:

Итак, уравнение высоты, проведённой к стороне BC:

2) Составим уравнение стороны AB треугольника ABC. A(-7;2), B(5;-3):

Угловой коэффициент перпендикулярной ей прямой

Значит уравнение перпендикулярной AB прямой имеет вид y=2,5x+b. Подставляем в это уравнение координаты точки C(1;8): 8=2,5·1+b, откуда b=5,5.
Получили уравнение высоты, проведённой из точки C к стороне BC: y=2,5x+5,5.
3) Составим уравнение стороны AC треугольника ABC. A(-7;2), C(1;8):

Угловой коэффициент прямой, перпендикулярной AC,

Таким образом, уравнение перпендикулярной AC прямой имеет вид

Подставив в него координаты точки B(5;-3), найдём b:

Итак, уравнение высоты треугольника ABC, опущенной из вершины B:

Даны координаты вершин треугольника .

1) Вычислить длину стороны .

2) Составить уравнение линии .

3) Составить уравнение высоты, проведенной из вершины А, и найти ее длину.

4) Найти точку пересечения медиан.

5) Найти косинус внутреннего угла при вершине В.

6) Найти координаты точки М, расположенной симметрично точке А, относительно прямой ВС.

А

1. Длина стороны ВС равна модулю вектора .

; .

2. Уравнение прямой ВС: ; ; .

3. Уравнение высоты АК запишем как уравнение прямой, проходящей через точку перпендикулярно вектору :

. Длину высоты АК можно найти как расстояние от точки А до прямой ВС: .

4. Найдем координаты точки N – середины стороны ВС:

; ; .

Точка пересечения медиан О делит каждую медиану на отрезки в отношении .

Используем формулы деления отрезка в данном отношении :

.

5. Косинус угла при вершине В найдем как косинус угла между векторами и ;

.

6. Точка М, симметричная точке А относительно прямой ВС, расположена на прямой АК, перпендикулярной к прямой ВС, на таком же расстоянии от прямой, как и точка А. Координаты точки К найдем как решения системы Систему решим по формулам Крамера:

.

Точка К является серединой отрезка АМ.

.

Контрольные варианты к задаче 2

Даны координаты вершин треугольника АВС. Требуется:

1) вычислить длину стороны ВС;

2) составить уравнение линии ВС;

3) составить уравнение высоты, проведенной из вершины А;

4) вычислить длину высоты, проведенной из вершины А;

5) найти точку пересечения медиан;

6) вычислить внутренний угол при вершине В;

7) найти координаты точки М, расположенной симметрично точке А относительно прямой ВС.

1. . 2. .
3. . 4. .
5. . 6. .
7. . 8. .
9. . 10. .
11. . 12. .
13. . 14. .
15. . 16. .
17. . 18. .
19. . 20. .
21. . 22. .
23. . 24. .
25. . 26. .
27. . 28. .
29. . 30. .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Учись учиться, не учась! 10637 — | 8008 — или читать все.

Вы можете заказать решение работы
по адресу , вместо бульдога ставьте @

Нужны сторона AB, высота CD, медиана AE и площадь. Координаты вершин А(-8;-3) В(4;-12) С(8;10)

Уравнение прямой, проходящей через две точки (x1,y1) и (x2,y2), описывается уравнением:

Для прямой AB:
(x+8)·(-9)-(y+3)·12 = 0
-9x-72-12y-36 = 0
9x+12y+108 = 0
3x + 4y + 36 = 0

Для отыскания уравнения высоты CD найдем сначала уравнение прямой, которая ей перпендикулярна. Это прямая AB (уравнение у нас есть). Выразим y через x явно:
y = -(3/4)x-9

Если прямая задана уравнением y = kx+b, то перпендикулярная ей прямая будет иметь вид y = (-1/k)x + d. Поэтому искомая высота имеет уравнение:

y = (4/3)x + d. Постоянную d найдем из условия, что высота проходит через точку С.

Таким образом, уравнение высоты CD: y = (4/3)x — 2/3, или, что то же, 4x-3y-2 = 0

Медиана AE проходит через две точки — точку А и середину отрезка BC. Найдем координаты середины BC по формуле:
X = (x1+x2)/2, Y = (y1+y2)/2. Искомые координаты: XE = 6, YE = -1

Теперь ищем уравнение прямой, идущей через две точки: A(-8;-3) и E(6;-1) по указанному выше уравнению.

(x+8)·2-(y+3)·14 = 0
x+8-7y-21 = 0
x-7y-13 = 0

Площадь треугольника, заданного на плоскости координатами вершин (x1,y1) (x2,y2) (x3,y3) определяется выражением:

S = (1/2)·|(x3-x1)·(y2-y1) — (y3-y1)·(x2-x1)|
S = (1/2)·|16·(-9)-13·12| = 300/2 = 150 (кв. ед.)

Источник статьи: http://dj-sensor.ru/uravnenie-vysoty-treugolnika-po-koordinatam/

Как научиться решать задачи по аналитической геометрии?
Типовая задача с треугольником на плоскости

Этот урок создан на подходе к экватору между геометрией плоскости и геометрией пространства. В данный момент назрела необходимость систематизировать наработанную информацию и ответить на очень важный вопрос: как научиться решать задачи по аналитической геометрии? Трудность состоит в том, что задач по геометрии можно придумать бесконечно много, и никакой учебник не вместит в себя всё множество и разнообразие примеров. Это не производная функции с пятью правилами дифференцирования, таблицей и несколькими техническими приёмами….

Решение есть! Не буду говорить громких слов о том, что я разработал какую-то грандиозную методику, однако, по моему мнению, существует эффективный подход к рассматриваемой проблеме, позволяющий достигнуть хорошей и отличной результативности даже полному чайнику. По крайне мере, общий алгоритм решения геометрических задач очень чётко оформился в моей голове.

ЧТО НЕОБХОДИМО знать и уметь
для успешного решения задач по геометрии?

От этого никуда не деться – чтобы наугад не тыкать носом кнопки, требуется освоить азы аналитической геометрии. Поэтому если вы только-только приступили к изучению геометрии или капитально позабыли её, пожалуйста, начните с урока Векторы для чайников. Кроме векторов и действий с ними, нужно знать базовые понятия геометрии плоскости, в частности, уравнение прямой на плоскости и простейшие задачи с прямой на плоскости. Геометрия пространства представлена статьями Уравнение плоскости, Уравнения прямой в пространстве, Основные задачи на прямую и плоскость и некоторыми другими уроками. Кривые линии и пространственные поверхности второго порядка стоЯт некоторым особняком, и специфических задач с ними не так уж много.

Предположим, студент уже обладает элементарными знаниями и навыками решения простейших задач аналитической геометрии. Но вот бывает же так: читаешь условие задачи, и… хочется вообще закрыть всё это дело, закинуть в дальний угол и забыть, как о страшном сне. Причём это принципиально не зависит от уровня вашей квалификации, сам время от времени сталкиваюсь с заданиями, у которых решение не очевидно. Как поступать в таких случаях? Не нужно бояться задачи, которая вам не понятна!

Во-первых, следует установить – это «плоская» или пространственная задача? Например, если в условии фигурируют векторы с двумя координатами, то, понятно, тут геометрия плоскости. А если преподаватель загрузил благодарного слушателя пирамидой, то здесь явно геометрия пространства. Результаты первого шага уже неплохи, ведь удалось отсечь громадное количество ненужной для данной задачи информации!

Второе. Условие, как правило, озаботит вас некоторой геометрической фигурой. Действительно, пройдитесь по коридорам родного ВУЗа, и вы увидите очень много озабоченных лиц.

В «плоских» задачах, не говоря о разумеющихся точках и прямых, наиболее популярная фигура – треугольник. Его мы разберём очень подробно. Далее идёт параллелограмм, и значительно реже встречаются прямоугольник, квадрат, ромб, окружность, др. фигуры.

В пространственных задачах могут летать те же плоские фигуры + сами плоскости и распространённые треугольные пирамиды с параллелепипедами.

Вопрос второй – всё ли вы знаете о данной фигуре? Предположим, в условии идёт речь о равнобедренном треугольнике, а вы весьма смутно помните, что это такой за треугольник. Открываем школьный учебник и читаем про равнобедренный треугольник. Что делать… врач сказал ромб, значит, ромб. Аналитическая геометрия аналитической геометрией, но задачу помогут решить геометрические свойства самих фигур, известные нам из школьной программы. Если не знать, чему равна сумма углов треугольника, то мучиться можно долго.

Третье. ВСЕГДА старайтесь выполнять чертёж (на черновике/чистовике/мысленно), даже если этого не требуется по условию. В «плоских» задачах сам Евклид велел взять в руки линейку с карандашом – и не только для того, чтобы понять условие, но и в целях самопроверки. При этом наиболее удобный масштаб 1 единица = 1 см (2 тетрадные клетки). Уж не будем рассуждать о нерадивых студентах и вращающихся в гробах математиках – в таких задачах совершить ошибку практически невозможно. Для пространственных заданий выполняем схематический рисунок, который тоже поможет проанализировать условие.

Чертёж или схематический чертёж зачастую сразу позволяет увидеть путь решения задачи. Конечно, для этого нужно знать фундамент геометрии и рубить в свойствах геометрических фигур (см. предыдущий пункт).

Четвёртое. Разработка алгоритма решения. Многие задачи геометрии являются многоходовыми, поэтому решение и его оформление очень удобно разбивать на пункты. Нередко алгоритм сразу же приходит в голову, после того как вы прочитали условие или выполнили чертёж. В случае возникновения трудностей начинаем с ВОПРОСА задачи. Например, по условию «требуется построить прямую…». Здесь самый логичный вопрос такой: «А что достаточно знать, чтобы построить данную прямую?». Предположим, «точка нам известна, нужно знать направляющий вектор». Задаём следующий вопрос: «Как найти этот направляющий вектор? Откуда?» и т.д.

Иногда случается «затык» – не решается задача и всё тут. Причины стопора могут быть следующими:

– Серьёзный пробел в элементарных знаниях. Иными словами, вы не знаете или (и) не видите какой-то очень простой вещи.

– Незнание свойств геометрических фигур.

– Задача попалась трудная. Да, так бывает. Нет смысла часами париться и собирать слёзки в платочек. Обратитесь за консультацией к преподавателю, сокурсникам или задайте вопрос на форуме. Причём, его постановку лучше сделать конкретной – о том участке решения, который вам не понятен. Клич в виде «Как решить задачу?» выглядит не очень-то… и, прежде всего, для вашей собственной репутации.

Этап пятый. Решаем-проверяем, решаем-проверяем, решаем-проверяем-даём ответ. Каждый пункт задачи выгодно проверять сразу после его выполнения. Это поможет немедленно обнаружить ошибку. Естественно, никто не запрещает быстренько прорешать задачу целиком, но возникает риск переписывать всё заново (часто несколько страниц).

Вот, пожалуй, все основные соображения, которыми целесообразно руководствоваться при решении задач.

Практическая часть урока представлена геометрией на плоскости. Примеров будет всего два, но мало не покажется =)

Пройдёмся по нити алгоритма, который я только что рассмотрел в своём маленьком научном труде:

Даны три вершины параллелограмма . Найти вершину .

Шаг первый: очевидно, что речь идёт о «плоской» задаче.

Шаг второй: в задаче речь идёт о параллелограмме. Все помнят такую фигуру параллелограмм? Не нужно улыбаться, немало людей получает образование в 30-40-50 и более лет, поэтому даже простые факты могут стереться из памяти. Определение параллелограмма встречается в Примере № 3 урока Линейная (не) зависимость векторов. Базис векторов.

Шаг третий: Выполним чертёж, на котором отметим три известные вершины. Забавно, что несложно сразу построить искомую точку :

Построить, это, конечно, хорошо, но решение необходимо оформить аналитически.

Шаг четвёртый: Разработка алгоритма решения. Первое, что приходит в голову – точку можно найти как пересечение прямых . Их уравнения нам неизвестны, поэтому придётся заняться этим вопросом:

1) Противоположные стороны параллельны. По точкам найдём направляющий вектор данных сторон . Это простейшая задача, которая рассматривалась на уроке Векторы для чайников.

Примечание: корректнее говорить «уравнение прямой, содержащей сторону», но здесь и далее для краткости я буду использовать словосочетания «уравнение стороны», «направляющий вектор стороны» и т.д.

2) Составим уравнение прямой по известной точке и найденному направляющему вектору (см. статью Уравнение прямой на плоскости)

3) Противоположные стороны параллельны. По точкам найдём направляющий вектор этих сторон .

4) Составим уравнение прямой по точке и направляющему вектору

В пунктах 1-2 и 3-4 мы фактически дважды решили одну и ту же задачу, она, кстати, разобрана в примере № 3 урока Простейшие задачи с прямой на плоскости. Можно было пойти более длинным путём – сначала найти уравнения прямых и только потом «вытащить» из них направляющие векторы .

5) Теперь уравнения прямых известны. Осталось составить и решить соответствующую систему линейных уравнений (см. примеры № 4, 5 того же урока Простейшие задачи с прямой на плоскости).

Точка найдена.

Задача довольно таки простая и её решение очевидно, но существует более короткий путь!

Второй способ решения:

Диагонали параллелограмма своей точкой пересечения делятся пополам. Точку я отметил, но чтобы не загромождать чертёж сами диагонали не провёл.

1) С помощью формул координат середины отрезка найдём точку – середину диагонали .

2) Рассмотрим диагональ . Из условия известна вершина «бэ», из предыдущего пункта найдена середина . Используя те же формулы координат середины отрезка, находим вершину .

Хорошее знание свойств параллелограмма позволило значительно сократить решение!

Желающие могут прорешать задачу. Всё перед глазами, все ссылки, комментарии даны. И, конечно, не забывайте про важный технический приём – решили пункт задания и сразу же его проверили (аналитически или по чертежу).

Переходим к наиболее распространённой задаче, которая встречается практически в каждом сборнике, в каждой методичке:

Типовая задача с треугольником на плоскости

Многие помнят из школы признаки равенства треугольников, признаки подобия треугольников и мучительное заучивание доказательств теорем. Как в сердцАх сказал один мой одноклассник, «не понимаю, на… доказывать равенство треугольников, если и так видно, что они одинаковые». Мы тоже не будем ничего доказывать, поскольку аналитическая геометрия подкрадывается к треугольнику совсем с другой стороны.

Типовая задача с треугольником на плоскости, как правило, формулируется так: Даны три вершины треугольника. Требуется найти… много чего требуется найти…. Повезёт, если будет пункта 3-4, но чаще всего их 5-6 и даже больше.

Даны вершины треугольника . Требуется:

1) составить уравнения сторон и найти их угловые коэффициенты;
2) найти длину стороны ;
3) найти ;
4) составить уравнение прямой , проходящей через точку параллельно прямой ;
5) составить уравнение высоты и найти её длину;
6) вычислить площадь треугольника ;
7) составить уравнение медианы ;
8) найти точку пересечения .

Знаете, прямо почувствовал себя палачом с большим топором. Чтобы не было так стыдно, скажу, что на практике в большинстве случаев пунктов бывает меньше. Просто я постарался собрать в одной задаче всё, что может встретиться. Для особо опасных энтузиастов заготовлена виселица ещё тройка пунктов, но это на закуску.

…бррр, что-то у меня сегодня траурная тема пошла, не иначе, от убыли светового дня. Поэтому скорее перехожу к решению.

Решение: С чего начать? Начать целесообразно с выполнения чертежа. По условию этого можно не делать, но для самоконтроля и самопроверки всегда строим чертёж на черновике.

Ещё раз напоминаю, что самый выгодный масштаб 1 единица = 1 см (2 тетрадные клетки).

1) Составим уравнения сторон и найдём их угловые коэффициенты.

Поскольку известны вершины треугольника, то уравнения каждой стороны составим по двум точкам. Процесс подробно рассмотрен на уроке Уравнение прямой на плоскости.

Составим уравнение стороны по точкам :

Для проверки следует мысленно либо на черновике подставить координаты каждой точки в полученное уравнение. Теперь найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:

Таким образом, угловой коэффициент:

Аналогично находим уравнения сторон . Не вижу особого смысла расписывать то же самое, поэтому сразу приведу готовый результат:

2) Найдём длину стороны . Это простейшая задача, рассмотренная на уроке Векторы для чайников. Для точек используем формулу:

По этой же формуле легко найти и длины других сторон. Проверка очень быстро выполнятся обычной линейкой.

3) Найдём . Это угол при вершине . Есть несколько способов решения, но самый универсальный способ – находить угол при вершине, как угол между векторами. Данная задача подробно рассмотрена на уроке Скалярное произведение векторов.

Используем формулу .

Найдём векторы:

Таким образом:

Кстати, попутно мы нашли длины сторон .

В результате:

Ну что же, похоже на правду, для убедительности к углу можно приложить транспортир.

Внимание! Не путайте угол треугольника с углом между прямыми. Угол треугольника может быть тупым, а угол между прямыми – нет (см. последний параграф статьи Простейшие задачи с прямой на плоскости). Однако для нахождения угла треугольника можно использовать и формулы вышеуказанного урока, но шероховатость состоит в том, что те формулы всегда дают острый угол. С их помощью я прорешал на черновике данную задачу и получил результат . А на чистовике пришлось бы записывать дополнительные оправдания, что .

4) Составить уравнение прямой , проходящей через точку параллельно прямой .

Стандартная задача, подробно рассмотренная в примере № 2 урока Простейшие задачи с прямой на плоскости. Из общего уравнения прямой вытащим направляющий вектор . Составим уравнение прямой по точке и направляющему вектору :

Как найти высоту треугольника?

5) Составим уравнение высоты и найдём её длину.

От строгих определений никуда не деться, поэтому придётся приворовывать из школьного учебника:

Высотой треугольника называется перпендикуляр, проведённый из вершины треугольника к прямой, содержащей противоположную сторону.

То есть, необходимо составить уравнение перпендикуляра, проведённого из вершины к стороне . Данная задача рассмотрена в примерах № 6, 7 урока Простейшие задачи с прямой на плоскости. Из уравнения снимаем вектор нормали . Уравнение высоты составим по точке и направляющему вектору :

Обратите внимание, что координаты точки нам не известны.

Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты составим по точке и угловому коэффициенту (см. начало урока Уравнение прямой на плоскости):

Длину высоты можно найти двумя способами.

а) находим – точку пересечения высоты и стороны ;
б) находим длину отрезка по двум известным точкам.

Но на уроке Простейшие задачи с прямой на плоскости рассматривалась удобная формула расстояния от точки до прямой. Точка известна: , уравнение прямой тоже известно: , Таким образом:

6) Вычислим площадь треугольника. В пространстве площадь треугольника традиционно рассчитывается с помощью векторного произведения векторов, но здесь дан треугольник на плоскости. Используем школьную формулу:
– площадь треугольника равна половине произведения его основания на высоту.

В данном случае:

Как найти медиану треугольника?

7) Составим уравнение медианы .

Медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

а) Найдём точку – середину стороны . Используем формулы координат середины отрезка. Известны координаты концов отрезка: , тогда координаты середины:

Таким образом:

Уравнение медианы составим по точкам :

Чтобы проверить уравнение, в него нужно подставить координаты точек .

8) Найдём точку пересечения высоты и медианы. Думаю, этот элемент фигурного катания все уже научились выполнять без падений:


Любители строгого оформления могут записать сакраментальное слово «Ответ» и скрупулезно перечислить в 8 пунктах полученные результаты.

А сейчас рассмотрим более редкие задания. Треугольник тот же.

9) найти уравнение биссектрисы ;
10) найти центр тяжести треугольника;
11) составить систему линейных неравенств, определяющих треугольник.

Как найти уравнение биссектрисы треугольника?

9) Биссектриса – это луч, который делит угол пополам. Рассмотрим три способа решения этого пункта. Длинный. Покороче. И самый простой.

Способ первый. Чтобы были более понятны последующие выкладки, я сразу приведу готовый чертёж с результатом:

Из свойств биссектрисы внутреннего угла следует соотношение длин следующих отрезков:

Длины сторон уже найдены в предыдущих пунктах: .

Таким образом: . Координаты точки найдём по формулам деления отрезка в данном отношении. Да, параметр «лямбда» получился просто сказочным, а кому сейчас легко?

Понеслась нелёгкая:

На последнем шаге я провёл умножение числителя и знаменателя на сопряжённое выражение – чтобы использовать формулу и избавиться от иррациональности в знаменателе.

Разбираемся со второй координатой:

Таким образом:

Предчувствие вас не обмануло, уравнение биссектрисы составим по точкам :

Проверил, всё сходится. На практике, конечно, вычисления почти всегда будут проще. Никого не хотел запугать, так уж получилось =)

И, кроме того, один из читателей сайта предложил ещё один, более короткий путь:

Способ второй. Рассмотрим произвольную точку биссектрисы, отличную от вершины и найдём векторы:

(именно такие! – не противоположные!), а также вектор .

Запишем скалярное произведение:
, но с другой стороны, по определению скалярного произведения:
Таким образом, получаем уравнение

Запишем скалярное произведение . И с другой стороны: . Таким образом, получаем второе уравнение: .

В результате получается система двух уравнений:

Произведения мы не знаем, но нам и не нужно его знать, из 1-го уравнения выражаем: – подставляем во 2-е уравнение:

и доводим его до ума:

– искомое уравнение биссектрисы. И пусть вас не смущает, что предыдущим способом мы получили уравнение , у этих двух уравнений соответствующие коэффициенты пропорциональны (проверьте на калькуляторе), поэтому они задают одну и ту же прямую.

Если нужно найти точку пересечения биссектрисы с противоположной стороной, то никаких проблем:
– решите систему самостоятельно, и с помощью калькулятора убедитесь, что получились те же самые координаты, что и в предыдущем способе решения.

Но на этом всё не закончилось! Ещё один читатель предложил, пожалуй, самый простой вариант решения:

Способ третий: находим единичный вектор , коллинеарный вектору и единичный вектор , коллинеарный вектору . Их сумма – есть в точности направляющий вектор биссектрисы. Доказательство элементарно: – так как это углы при основании равнобедренного треугольника (оранжевые дуги на чертеже). И в свою очередь: – это накрест лежащие углы при параллельных прямых (проходили в школе). Таким образом, и вектор действительно является направляющим вектором биссектрисы:

Остальное – дело техники. Чтобы найти вектор единичной длины, коллинеарный данному, нужно координаты последнего разделить на его длину. По-научному нахождение соответствующего единичного вектора называется нормированием вектора:

Самостоятельно убедитесь, что длины полученных векторов равны единице.

Найдём направляющий вектор биссектрисы:

Уравнение биссектрисы составим по точке и направляющему вектору :

по правилу пропорции избавляемся от трёхэтажности:

после чего избавляемся от дробей, умножив обе части на :

и окончательная причёска:

– искомое уравнение.

Коэффициенты полученного уравнения пропорциональны соответствующим коэффициентам уравнений, которые получены в двух предыдущих пунктах, и желающие могут убедиться в этом с помощью калькулятора.

Какой способ выбрать? По умолчанию, конечно, третий. Но лучше тот, который предложен в вашей методичке или на лекции. Так, первый, самый сложный способ как раз взят из конкретной методички.

Как найти центр тяжести треугольника?

10) А что такое вообще центр тяжести плоской фигуры? Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то теоретически фигура не должна свалиться.

Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке. Из пункта № 7 нам уже известна одна из медиан: . Как решить задачу? Можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь короче! Нужно только знать полезное свойство:

Точка пересечения медиан делит каждую из медиан в отношении , считая от вершины треугольника. Поэтому справедливо отношение

Нам известны точки .
По формулам деления отрезка в данном отношении:

Таким образом, центр тяжести треугольника:

Заключительный пункт урока:

11) Составим систему линейных неравенств, определяющих треугольник.

Для понимания решения необходимо хорошо изучить статью Линейные неравенства. Системы линейных неравенств.

Для удобства перепишем найденные уравнения сторон:

Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится вершина . Составим вспомогательный многочлен и вычислим его значение в точке : . Поскольку сторона принадлежит треугольнику, то неравенство будет нестрогим:

Если не понятно, что к чему, пожалуйста, вернитесь к материалам про линейные неравенства.

Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому очевидно неравенство .

И, наконец, для прямой составим многочлен , в который подставим координаты точки : . Таким образом, получаем третье неравенство: .

Итак, треугольник определяется следующей системой линейных неравенств:

Как уже отмечалось, на практике рассмотренная задача с треугольником на плоскости очень популярна. Пунктов решения будет, конечно, не одиннадцать, а меньше, причём встретиться они могут в самых различных комбинациях. В этой связи вам придётся самостоятельно протягивать логическую цепочку решения. А вообще, всё довольно однообразно.

Может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =) Ненасытные читатели могут ознакомиться с решениями других задач по аналитической геометрии. Подходящий архив можно закачать на странице Готовые задачи по высшей математике.

Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них! Главное, придерживаться методики решения, которая освещена в самом начале урока. А теперь можно немного расслабиться, заданий для самостоятельного решения я не придумал. Кандидатур было много, но по основным приёмам решения все они до неприличия похожи на разобранные примеры. . И приснится вам треугольник =)!

(Переход на главную страницу)

cкидкa 17% на первый зaкaз, при оформлении введите прoмoкoд: 5530-xr4ys

Источник статьи: http://www.mathprofi.ru/kak_nauchitsa_reshat_zadachi_po_geometrii.html

Математика / Пример Аналит геом на пл

Пример решения некоторых заданий из типовой работы «Аналитическая геометрия на плоскости»

Даны вершины , , треугольника АВС. Найти:

Уравнения всех сторон треугольника;

Систему линейных неравенств, определяющих треугольник АВС;

Уравнения высоты, медианы и биссектрисы треугольника, проведенных из вершины А;

Точку пересечения высот треугольника;

Точку пересечения медиан треугольника;

Длину высоты, опущенной на сторону АВ;

Пусть вершины треугольника имеют координаты: А (1; 4), В (5; 3), С (3; 6). Сразу нарисуем чертеж:

1. Чтобы выписать уравнения всех сторон треугольника, воспользуемся уравнением прямой, проходящей через две заданные точки с координатами (x0, y0) и (x1, y1):

=

Полученное уравнение будет уравнением прямой АВ, записанным в общей форме. Аналогично находим уравнение прямой АС:

И так же уравнение прямой ВС:

2. Заметим, что множество точек треугольника АВС представляет собой пересечение трех полуплоскостей, причем каждую полуплоскость можно задать с помощью линейного неравенства. Если мы возьмем уравнение любой из сторон ∆АВС, например АВ, тогда неравенства

и

задают точки, лежащие по разные стороны от прямой АВ. Нам нужно выбрать ту полуплоскость, где лежит точка С. Подставим ее координаты в оба неравенства:

и .

Правильным будет второе неравенство, значит, нужные точки определяются неравенством

.

Аналогично поступаем с прямой ВС, ее уравнение . В качестве пробной используем точку А (1, 1):

,

значит, нужное неравенство имеет вид:

.

Если проверим прямую АС (пробная точка В), то получим:

,

значит, нужное неравенство будет иметь вид

Окончательно получаем систему неравенств:

Знаки «≤», «≥» означают, что точки, лежащие на сторонах треугольника, тоже включены во множество точек, составляющих треугольник АВС.

3. а) Для того, чтобы найти уравнение высоты, опущенной из вершины А на сторону ВС, рассмотрим уравнение стороны ВС: . Вектор с координатами перпендикулярен стороне ВС и, значит, параллелен высоте. Запишем уравнение прямой, проходящей через точку А параллельно вектору :

Это уравнение высоты, опущенной из т. А на сторону ВС.

б) Найдем координаты середины стороны ВС по формулам:

Здесь – это координаты т. В, а – координаты т. С. Подставим и получим:

Прямая, проходящая через эту точку и точку А является искомой медианой:

в) Уравнение биссектрисы мы будем искать, исходя из того, что в равнобедренном треугольнике высота, медиана и биссектриса, опущенные из одной вершины на основание треугольника, равны. Найдем два вектора и и их длины:

,

Тогда вектор имеет такое же направление, что и вектор , а его длина Точно так же единичный вектор совпадает по направлению с вектором Сумма векторов

есть вектор, который совпадает по направлению с биссектрисой угла А. Таким образом, уравнение искомой биссектрисы можно записать виде:

4) Уравнение одной из высот мы уже построили. Построим уравнение еще одной высоты, например, из вершины В. Сторона АС задается уравнением Значит, вектор перпендикулярен АС, и, тем самым, параллелен искомой высоте. Тогда уравнение прямой, проходящей через вершину В в направлении вектора (т. е. перпендикулярно АС), имеет вид:

Известно, что высоты треугольника пересекаются в одной точке. В частности, эта точка является пересечением найденных высот, т.е. решением системы уравнений:

— координаты этой точки.

5. Середина АВ имеет координаты . Запишем уравнение медианы к стороне АВ. Эта прямая проходит через точки с координатами (3, 2) и (3, 6), значит, ее уравнение имеет вид:

Заметим, что ноль в знаменателе дроби в записи уравнения прямой означает, что эта прямая проходит параллельно оси ординат.

Чтобы найти точку пересечения медиан достаточно решить систему уравнений:

Точка пересечения медиан треугольника имеет координаты .

6. Длина высоты, опущенной на сторону АВ, равна расстоянию от точки С до прямой АВ с уравнением и находится по формуле:

7. Косинус угла А можно найти по формуле косинуса угла между векторами и , который равен отношению скалярного произведения этих векторов к произведению их длин:

:

Источник статьи: http://studfile.net/preview/1958381/

Даны координаты вершин треугольника

Даны координаты вершин треугольника .

1) Вычислить длину стороны .

2) Составить уравнение линии .

3) Составить уравнение высоты, проведенной из вершины А, и найти ее длину.

4) Найти точку пересечения медиан.

5) Найти косинус внутреннего угла при вершине В.

6) Найти координаты точки М, расположенной симметрично точке А, относительно прямой ВС.

А

1. Длина стороны ВС равна модулю вектора .

; .

2. Уравнение прямой ВС: ; ; .

3. Уравнение высоты АК запишем как уравнение прямой, проходящей через точку перпендикулярно вектору :

. Длину высоты АК можно найти как расстояние от точки А до прямой ВС: .

4. Найдем координаты точки N – середины стороны ВС:

; ; .

Точка пересечения медиан О делит каждую медиану на отрезки в отношении .

Используем формулы деления отрезка в данном отношении :

.

5. Косинус угла при вершине В найдем как косинус угла между векторами и ;

.

6. Точка М, симметричная точке А относительно прямой ВС, расположена на прямой АК, перпендикулярной к прямой ВС, на таком же расстоянии от прямой, как и точка А. Координаты точки К найдем как решения системы Систему решим по формулам Крамера:

.

Точка К является серединой отрезка АМ.

.

Контрольные варианты к задаче 2

Даны координаты вершин треугольника АВС. Требуется:

1) вычислить длину стороны ВС;

2) составить уравнение линии ВС;

3) составить уравнение высоты, проведенной из вершины А;

4) вычислить длину высоты, проведенной из вершины А;

5) найти точку пересечения медиан;

6) вычислить внутренний угол при вершине В;

7) найти координаты точки М, расположенной симметрично точке А относительно прямой ВС.

Источник статьи: http://studopedia.ru/7_131449_primer-.html

Как найти вершину треугольника

Треугольник

Треугольник — это замкнутая ломаная линия, состоящая из трёх звеньев:

Вершины ломаной называются вершинами треугольника, а её звенья — сторонами треугольника. Углы, образованные двумя сторона треугольника, называются углами треугольника:

В треугольнике ABC вершины A, B и C — это вершины треугольника, звенья AB, BC и CAстороны треугольника. Три угла — ∠ABC, ∠BCA и ∠CABуглы треугольника. Часто углы треугольника обозначаются только одной буквой: ∠A, ∠B, ∠C.

Треугольник обычно обозначается тремя буквами, стоящими при его вершинах. Например, треугольник ABC, или BCA, или CBA. Вместо слова треугольник часто используется знак />. Так, запись />ABC будет читаться: треугольник ABC .

У каждого треугольника 3 вершины, 3 стороны и 3 угла.

Высота

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на его основание. Высота треугольника может быть опущена и на продолжение основания.

Отрезок BN — это высота />ABC. Отрезок EL высота />DEF, опущенная на продолжение стороны DF.

Длина высоты — это длина отрезка от вершины угла до пересечения с основанием.

Каждый треугольник имеет три высоты.

Биссектриса

Биссектриса угла треугольника — прямая, делящая угол треугольника пополам. Длина отрезка этой прямой от вершины угла до точки пересечения с противоположной стороной называется длиной биссектрисы.

Отрезок BN — это биссектриса ABC.

Каждый треугольник имеет три биссектрисы.

Медиана

Медиана треугольника — это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Длина этого отрезка называется длиной медианы.

Отрезок BN — это медиана ABC.

Как найти вершину треугольника формула

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 bc · cos α

b 2 = a 2 + c 2 – 2 ac · cos β

c 2 = a 2 + b 2 – 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 – a 2

mb = 1 2 √ 2 a 2 +2 c 2 – b 2

mc = 1 2 √ 2 a 2 +2 b 2 – c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k – коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

2 ответа 2

Пусть A , B — вершины основания, C — неизвестная вершина. Если дана сумма s длин боковых сторон, то каждая из сторон равна половине этой суммы. Итак, AC = BC = s/2 .

Пусть M — середина AB (её координаты равны полусумме координат A и B ). Тогда CM — высота, из прямоугольного треугольника AMC имеем:

(Если под корнем отрицательное число, задача, очевидно, не имеет решений.)

Итак, у нас есть длина вектора MC , его направление найти несложно, учитывая, что он перпендикулярен вектору AB : если (p, q) — вектор AB , то вектор (-q, p) перпендикулярен ему, вектор (-q/l, p/l) (где l = sqrt(p^2 + q^2) ) перпендикулярен AB и имеет длину 1, а вектор (-q/l*L, p/l*L) (где L — рассчитанная раньше длина CM ) перпендикулярен AB и имеет длину, равную длине MC .

Таким образом, у нас есть вектор MC . Прибавляя его координаты к координатам точки M , мы получаем точку C .

Заметьте, что у нас возможно 2 решения, отличающиеся знаком вектора MC : для получения второго решения поменяйте знак у MC из первого решения.

Эта и другие подобные задачи будут кодироваться очень легко, если в вашем арсенале есть классы, представляющие точку, вектор, и определены операции над ними. Например, в моём коде обычно решение выглядит так (C#):

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c – стороны произвольного треугольника

α , β , γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b – катеты

c – гипотенуза

α , β – острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

H – высота треугольника

Вершина треугольника

В геометрии нередко рассматривают такое понятие, как «вершина треугольника». Это точка пересечения двух сторон данной фигуры. Практически в каждой задаче встречается это понятие, поэтому имеет смысл рассмотреть его более подробно.

Определение вершины треугольника

В треугольнике есть три точки пересечения сторон, образующие три угла. Их называют вершинами, а стороны, на которые они опираются – сторонами треугольника.

Рис. 1. Вершина в треугольнике.

Вершины в треугольниках обозначают большими латинскими буквами. Поэтому чаще всего в математике стороны обозначают двумя заглавными латинскими буквами, по названию вершин, которые входят в стороны. Например стороной АВ называют сторону треугольника, соединяющую вершины А и В.

Рис. 2. Обозначение вершин в треугольнике.

Характеристики понятия

Если взять произвольно ориентированный в плоскости треугольник, то на практике очень удобно выразить его геометрические характеристики через координаты вершин этой фигуры. Так, вершину А треугольника можно выразить точкой с определенными числовыми параметрами А(х; y).

Зная координаты вершин треугольника можно найти точки пересечения медиан, длину высоты, опущенную на одну из сторон фигуры, и площадь треугольника.

Для этого используются свойства векторов, изображаемых в системе декартовой системе координат, ведь длина стороны треугольника определятся через длину вектора с точками, в которых находятся соответствующие вершины этой фигуры.

Использование вершины треугольника

При любой вершине треугольника можно найти угол, который будет смежным внутреннему углу рассматриваемой фигуры. Для этого придется продлить одну из сторон треугольника. Поскольку сторон при каждой вершин две, то и внешних углов при каждой вершине два. Внешний угол равен сумме двух внутренних углов треугольника, несмежных с ним.

Рис. 3. Свойство внешнего угла треугольника.

Если построить при одной вершине два внешних угла, то они будут равны, как вертикальные.

Что мы узнали?

Одним из важных понятий геометрии при рассмотрении различных типов треугольников является вершина. Это точка, где пересекаются две стороны угла данной геометрической фигуры. Ее обозначают одной из больших букв латинского алфавита. Вершину треугольника можно выразить через координаты x и y, это помогает определять длину стороны треугольника как длину вектора.

Источник статьи: http://ritorika.com.ua/dokument/23/kak-najti-vershinu-treugolnika

Прямая на плоскости. Примеры решений

Решение проводим с помощью калькулятора.
Даны координаты треугольника: A(2,1), B(1,-2), C(-1,0).
1) Координаты векторов
Координаты векторов находим по формуле:
X = xj — xi; Y = yj — yi
здесь X,Y координаты вектора; xi, yi — координаты точки Аi; xj, yj — координаты точки Аj
Например, для вектора AB
X = x2 — x1; Y = y2 — y1
X = 1-2 = -1; Y = -2-1 = -3
AB(-1;-3)
AC(-3;-1)
BC(-2;2)
2) Модули векторов
Длина вектора a(X;Y) выражается через его координаты формулой:




3) Угол между прямыми
Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:

где a1a2 = X1X2 + Y1Y2
Найдем угол между сторонами AB и AC

γ = arccos(0.6) = 53.13 0
4) Проекция вектора
Проекцию вектора b на вектор a можно найти по формуле:

Найдем проекцию вектора AB на вектор AC

5) Площадь треугольника
Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) — вершины треугольника, тогда его площадь выражается формулой:

В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение. Принимая A за первую вершину, находим:

Пример. Даны координаты вершин треугольника АВС: А(–3; –1), В(4; 6), С(8; –2).
Требуется: 1) вычислить длину стороны ВС; 2) составить уравнение стороны ВС; 3) найти внутренний угол треугольника при вершине В; 4) составить уравнение высоты АК, проведенной из вершины А; 5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан); 6) сделать чертеж в системе координат.

Задание. Даны координаты вершин треугольника ABC: A(7;4), B(-9;-8), C(-2;16). Требуется:

  1. составить уравнение медианы, проведенной из вершины B, и вычислить ее длину.
  2. составить уравнение высоты, проведенной из вершины A, и вычислить ее длину.
  3. найти косинус внутреннего угла B треугольника ABC.

Сделать чертеж.

Пример №3. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) длину стороны AB ; 2) внутренний угол A в радианах с точностью до 0,001. Сделать чертеж.
Скачать

Пример №4. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) уравнение высоты, проведенной через вершину C ; 2) уравнение медианы, проведенной через вершину C ; 3) точку пересечения высот треугольника; 4) длину высоты, опущенной из вершины C. Сделать чертеж.
Скачать

Пример №5. Даны вершины треугольника ABC: A(-5;0), B(7;-9), C(11;13). Определите: 1) длину стороны AB ; 2) уравнение сторон AB и AC и их угловые коэффициенты; 3) площадь треугольника.

  • Решение
  • Видео решение

Задание. Найти острый угол между прямыми x + y -5 = 0 и x + 4y — 8 = 0 .
Рекомендации к решению. Задача решается посредством сервиса Угол между двумя прямыми.
Ответ: 30.96 o

Пример №1. Даны координаты точек А1(1;0;2), A2(2;1;1), А3(-1;2;0), A4(-2;-1;-1). Найти длину ребра А1А2. Составить уравнение ребра А1А4 и грани А1А2А3. Составить уравнение высоты опущенной из точки А4 на плоскость А1А2А3. Найти площадь треугольника А1A2A3. Найти объем треугольной пирамиды А1A2А3A4.

  • Решение
  • Видео решение

Задание. По координатам вершин пирамиды А1,А2,А3,А4 найти: 1) длины ребер А1А2 и А1А3; 2) угол между ребрами А1А2 и А1А3; 3) площадь грани А1А2А3;4) объем пирамиды А1А2А3А4
A1(3;5;4,0,0), A2(8;7;4,0,0), A3(5;10;4,0,0), A4(4;7;9,0,0):Пример №10

Пример. В декартовой прямоугольной системе координат даны вершины пирамиды A, B, C, D. Найдите длину ребра AB, косинус угла между векторами, уравнение ребра, уравнение грани, уравнение высоты.
Решение

Пример. Даны вершины треугольника А(1, –1, -3), В(2, 0, -10), С(3, 0, -2).
а) Найти уравнение биссектрисы и высоты данного треугольника, проведенных из вершины A .
б) Найти уравнения всех его медиан и координаты точки их пересечения.
см. также Как найти периметр треугольника

Источник статьи: http://math.semestr.ru/line/example-analytic-geometry.php

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *