Меню

Как найти вектор если есть 2 точки



Нахождение координат вектора через координаты точек

Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i → должно совпадать с осью O x , а направление вектора j → с осью O y .

Векторы i → и j → называют координатными векторами.

Координатные векторы неколлинеарны. Поэтому любой вектор p → можно разложить по векторам p → = x i → + y j → . Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p → по координатным векторам называются координатами вектора p → в данной системе координат.

Координаты вектора записываются в фигурных скобках p → x ; y . На рисунке вектор O A → имеет координаты 2 ; 1 , а вектор b → имеет координаты 3 ; — 2 . Нулевой вектор представляется в виде 0 → 0 ; 0 .

Если векторы a → и b → равны, то и y 1 = y 2 . Запишем это так: a → = x 1 i → + y 1 j → = b → = x 2 i → + y 2 j → , значит x 1 = x 2 , y 1 = y 2 .

Таким образом, координаты равных векторов соответственно равны.

Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на O x y заданы координаты точек начала и конца A B → : A x a , y a , B x b , y b . Найти координаты заданного вектора.

Изобразим координатную ось.

Из формулы сложения векторов имеем O A → + A B → = O B → , где O – начало координат. Отсюда следует, что A B → = O B → — O A → .

O A → и O B → – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения O A → = x a , y a , O B → = x b , y b .

По правилу операций над векторами найдем A B → = O B → — O A → = x b — x a , y b — y a .

Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек.

Для нахождения координат вектора, необходимо найти разность его точек конца и начала.

Найти координаты O A → и A B → при значении координат точек A ( 2 , — 3 ) , B ( — 4 , — 1 ) .

Для начала определяется радиус-вектор точки A . O A → = ( 2 , — 3 ) . Чтобы найти A B → , нужно вычесть значение координат точек начала из координат точек конца.

Получаем: A B → = ( — 4 — 2 , — 1 — ( — 3 ) ) = ( — 6 , 2 ) .

Ответ: O A → = ( 2 , — 3 ) , A B → = ( — 6 , — 2 ) .

Задано трехмерное пространство с точкой A = ( 3 , 5 , 7 ) , A B → = ( 2 , 0 , — 2 ) . Найти координаты конца A B → .

Подставляем координаты точки A : A B → = ( x b — 3 , y b — 5 , z b — 7 ) .

По условию известно, что A B → = ( 2 , 0 , — 2 ) .

Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: x b — 3 = 2 y b — 5 = 0 z b — 7 = — 2

Отсюда следует, что координаты точки B A B → равны: x b = 5 y b = 5 z b = 5

Ответ: B ( 5 , 5 , 5 ) .

Источник статьи: http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie_kordinat_vectora/

Нахождение координат вектора

В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.

Нахождение координат вектора

Для того, чтобы найти координаты вектора AB , нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).

Формулы для определения координат вектора

» data-lang=»default» data-override=»<"emptyTable":"","info":"","infoEmpty":"","infoFiltered":"","lengthMenu":"","search":"","zeroRecords":"","exportLabel":"","file":"default">» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач Для трехмерных задач Для n-мерных векторов http://microexcel.ru/koordinaty-vektora/

Векторы для чайников. Действия с векторами.
Координаты вектора. Простейшие задачи с векторами

Наконец-то у меня добрались руки до обширной и долгожданной темы аналитической геометрии. Сначала немного о данном разделе высшей математики…. Наверняка вам сейчас вспомнился курс школьной геометрии с многочисленными теоремами, их доказательствами, чертежами и т.д. Что скрывать, нелюбимый и часто малопонятный предмет для значительной доли учеников. Аналитическая геометрия, как ни странно, может показаться более интересной и доступной. Что означает прилагательное «аналитическая»? На ум сразу приходят два штампованных математических оборота: «графический метод решения» и «аналитический метод решения». Графический метод, понятно, связан с построением графиков, чертежей. Аналитический же метод предполагает решение задач преимущественно посредством алгебраических действий. В этой связи алгоритм решений практически всех задач аналитической геометрии прост и прозрачен, зачастую достаточно аккуратно применить нужные формулы – и ответ готов! Нет, конечно, совсем без чертежей тут не обойдется, к тому же для лучшего понимания материала я постараюсь приводить их сверх необходимости.

Открываемый курс уроков по геометрии не претендует на теоретическую полноту, он ориентирован на решение практических задач. Я включу в свои лекции только то, что с моей точки зрения, является важным в практическом плане. Если вам необходима более полная справка по какому-либо подразделу, рекомендую следующую вполне доступную литературу:

1) Вещь, с которой, без шуток, знакомо несколько поколений: Школьный учебник по геометрии, авторы – Л.С. Атанасян и Компания. Сия вешалка школьной раздевалки уже выдержала 20 (!) переизданий, что, конечно, не является пределом.

2) Геометрия в 2 томах. Авторы Л.С. Атанасян, Базылев В.Т. Это литература для высшей школы, вам потребуется первый том. Из моего поля зрения могут выпадать редко встречающиеся задачи, и учебное пособие окажет неоценимую помощь.

Из инструментальных средств предлагаю собственную разработку – программный комплекс по аналитической геометрии, который значительно упростит жизнь и сэкономит массу времени.

Предполагается, что читатель знаком с базовыми геометрическими понятиями и фигурами: точка, прямая, плоскость, треугольник, параллелограмм, параллелепипед, куб и т.д. Желательно помнить некоторые теоремы, хотя бы теорему Пифагора, привет второгодникам)

А сейчас мы последовательно рассмотрим: понятие вектора, действия с векторами, координаты вектора. Далее рекомендую прочитать важнейшую статью Скалярное произведение векторов, а также Линейная (не) зависимость векторов. Базис векторов и Векторное и смешанное произведение векторов. Не лишней будет и локальная задача – Деление отрезка в данном отношении. На основе вышеуказанной информации можно освоить уравнение прямой на плоскости с простейшими примерами решений, что позволит научиться решать задачи по геометрии. Также полезны следующие статьи: Уравнение плоскости в пространстве, Уравнения прямой в пространстве, Основные задачи на прямую и плоскость, другие разделы аналитической геометрии. Естественно, попутно будут рассматриваться типовые задания.

Более того, по материалам сайта создана книга!

. да, это свершилось! – освойте азы теории и научитесь решать в кратчайшие сроки! Спасибо за поддержку проекта.

Понятие вектора. Свободный вектор

Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:

В данном случае началом отрезка является точка , концом отрезка – точка . Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор. Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.

Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.

. Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.

Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой: , но допустима и запись , которую я буду использовать в дальнейшем. Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом: , подразумевая тем самым, что это вектор.

То была стилистика, а сейчас о способах записи векторов:

1) Векторы можно записать двумя большими латинскими буквами:
и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.

2) Векторы также записывают маленькими латинскими буквами:
В частности, наш вектор можно для краткости переобозначить маленькой латинской буквой .

Длиной или модулем ненулевого вектора называется длина отрезка . Длина нулевого вектора равна нулю. Логично.

Длина вектора обозначается знаком модуля: ,

Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.

То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор.

Если совсем просто – вектор можно отложить от любой точки:

Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор. Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной «школьный» вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте направленный отрезок произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё почти корректно – направленный отрезок можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)

Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.

Следует отметить, что с точки зрения физики понятие свободного вектора в общем случае некорректно, и точка приложения имеет значение. Действительно, прямой удар одинаковой силы по носу или по лбу хватит развивать мой дурацкий пример влёчет разные последствия. Впрочем, несвободные векторы встречаются и в курсе вышмата (не ходите туда :)).

Далее, если не оговаривается иное, речь пойдёт только о свободных векторах.

Действия с векторами. Коллинеарность векторов

В школьном курсе геометрии рассматривается ряд действий и правил с векторами: сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др. Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.

Правило сложения векторов по правилу треугольников

Рассмотрим два произвольных ненулевых вектора и :

Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор от конца вектора :

Суммой векторов и является вектор . Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору , а затем по вектору . Тогда сумма векторов представляет собой вектор результирующего перемещения с началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.

Кстати, если вектор отложить от начала вектора , то получится эквивалентное правило параллелограмма сложения векторов.

Умножение вектора на число

Сначала о коллинеарности векторов. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».

Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными. Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены.

Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация: (векторы сонаправлены) или (векторы направлены противоположно).

Произведением ненулевого вектора на число является такой вектор , длина которого равна , причём векторы и сонаправлены при и противоположно направлены при .

Правило умножения вектора на число легче понять с помощью рисунка:

Разбираемся более детально:

1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.

2) Длина. Если множитель заключен в пределах или , то длина вектора уменьшается. Так, длина вектора в два раза меньше длины вектора . Если множитель по модулю больше единицы, то длина вектора увеличивается в раз.

3) Обратите внимание, что все векторы коллинеарны, при этом один вектор выражен через другой, например, . Обратное тоже справедливо: если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор.

4) Векторы сонаправлены. Векторы и также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.

Какие векторы являются равными?

Два вектора равны, если они сонаправлены и имеют одинаковую длину. Заметьте, что сонаправленность подразумевает коллинеарность векторов. Определение будет неточным (избыточным), если сказать: «Два вектора равны, если они коллинеарны, сонаправлены и имеют одинаковую длину».

С точки зрения понятия свободного вектора, равные векторы – это один и тот же вектор, о чём уже шла речь в предыдущем параграфе.

Координаты вектора на плоскости и в пространстве

Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы и :

Векторы и ортогональны. Ортогональны = Перпендикулярны. Рекомендую потихоньку привыкать к терминам: вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность.

Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: .

Рассматриваемые векторы называют координатными векторами или ортами. Данные векторы образуют базис на плоскости. Что такое базис, думаю, интуитивно многим понятно, более подробную информацию можно найти в статье Линейная (не) зависимость векторов. Базис векторов. Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.

Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице.

Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами.

Любой вектор плоскости единственным образом выражается в виде:
, где числа, которые называются координатами вектора в данном базисе. А само выражение называется разложением вектора по базису .

! ВСЕМ настоятельно рекомендую прочитать ВСЁ!

Начнем с первой буквы алфавита: . По чертежу хорошо видно, что при разложении вектора по базису используются только что рассмотренные:
1) правило умножения вектора на число: и ;
2) сложение векторов по правилу треугольника: .

А теперь мысленно отложите вектор от любой другой точки плоскости. Совершенно очевидно, что его разложение будет «неотступно следовать за ним». Вот она, свобода вектора – вектор «всё носит при себе». Это свойство, разумеется, справедливо для любого вектора. Забавно, что сами базисные (свободные) векторы не обязательно откладывать от начала координат, один можно нарисовать, например, слева внизу, а другой – справа вверху, и от этого ничего не изменится! Правда, делать так не нужно, поскольку преподаватель тоже проявит оригинальность и нарисует вам «зачтено» в неожиданном месте.

Векторы , иллюстрируют в точности правило умножения вектора на число, вектор сонаправлен с базисным вектором , вектор направлен противоположно по отношению к базисному вектору . У данных векторов одна из координат равна нулю, дотошно можно записать так:


А базисные векторы, к слову, так: (по сути, они выражаются сами через себя).

И, наконец: , . Кстати, что такое вычитание векторов, и почему я не рассказал о правиле вычитания? Где-то в линейной алгебре, уже не помню где, я отмечал, что вычитание – это частный случай сложения. Так, разложения векторов «дэ» и «е» преспокойно записываются в виде суммы: , . Проследите по чертежу, как чётко в этих ситуациях работает старое доброе сложение векторов по правилу треугольника.

Рассмотренное разложение вида иногда называют разложением вектора в системе орт (т.е. в системе единичных векторов). Но это не единственный способ записи вектора, распространён следующий вариант:

Или со знаком равенства:

Сами базисные векторы записываются так: и

То есть, в круглых скобках указываются координаты вектора. В практических задачах используются все три варианта записи.

Сомневался, говорить ли, но всё-таки скажу: координаты векторов переставлять нельзя. Строго на первом месте записываем координату, которая соответствует единичному вектору , строго на втором месте записываем координату, которая соответствует единичному вектору . Действительно, и – это ведь два разных вектора.

С координатами на плоскости разобрались. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же! Только добавится ещё одна координата. Трехмерные чертежи выполнять тяжко, поэтому ограничусь одним вектором, который для простоты отложу от начала координат:

Перед вами ортонормированный базис трехмерного пространства и прямоугольная система координат, единичные векторы данного базиса попарно ортогональны: и . Ось наклонена под углом 45 градусов только для того, чтобы складывалось визуальное впечатление пространства. О том, как правильно выполнять плоские и трехмерные чертежи на клетчатой бумаге, читайте в самом начале методички Графики и свойства функций.

Любой вектор трехмерного пространства можно единственным способом разложить по ортонормированному базису :
, где – координаты вектора (числа) в данном базисе.

Пример с картинки: . Давайте посмотрим, как здесь работают правила действий с векторами. Во-первых, умножение вектора на число: (красная стрелка), (зеленая стрелка) и (малиновая стрелка). Во-вторых, перед вами пример сложения нескольких, в данном случае трёх, векторов: . Вектор суммы начинается в исходной точке отправления (начало вектора ) и утыкается в итоговую точку прибытия (конец вектора ).

Все векторы трехмерного пространства, естественно, тоже свободны, попробуйте мысленно отложить вектор от любой другой точки, и вы поймёте, что его разложение «останется при нём».

Аналогично плоскому случаю, помимо записи широко используются версии со скобками: либо .

Если в разложении отсутствует один (или два) координатных вектора, то вместо них ставятся нули. Примеры:
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем ;
вектор (дотошно ) – запишем .

Базисные векторы записываются следующим образом:

Вот, пожалуй, и все минимальные теоретические знания, необходимые для решения задач аналитической геометрии. Возможно многовато терминов и определений, поэтому чайникам рекомендую перечитать и осмыслить данную информацию ещё раз. Да и любому читателю будет полезно время от времени обращаться к базовому уроку для лучшего усвоения материала. Коллинеарность, ортогональность, ортонормированный базис, разложение вектора – эти и другие понятия будут часто использоваться в дальнейшем. Отмечу, что материалов сайта недостаточно для сдачи теоретического зачета, коллоквиума по геометрии, так как все теоремы (к тому же без доказательств) я аккуратно шифрую – в ущерб научному стилю изложения, но плюсом к вашему пониманию предмета. Для получения обстоятельной теоретической справки прошу следовать на поклон к профессору Атанасяну.

А мы переходим к практической части:

Простейшие задачи аналитической геометрии.
Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть, даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

Как найти вектор по двум точкам?

Если даны две точки плоскости и , то вектор имеет следующие координаты:

Если даны две точки пространства и , то вектор имеет следующие координаты:

То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора.

Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.

Даны две точки плоскости и . Найти координаты вектора

Решение: по соответствующей формуле:

Как вариант, можно было использовать следующую запись:

Эстеты решат и так:

Лично я привык к первой версии записи.

Ответ:

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:

Обязательно нужно понимать различие между координатами точек и координатами векторов:

Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании или необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости (во избежание путаницы переобозначив, например, через ). Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .

Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

Дамы и господа, набиваем руку:

а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .

Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится ;-). Чертежи делать не нужно. Решения и ответы в конце урока.

Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)

Как найти длину отрезка?

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Даны точки и . Найти длину отрезка .

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок это не вектор, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приёмвынесение множителя из-под корня. В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Как найти длину вектора?

Если дан вектор плоскости , то его длина вычисляется по формуле .

Если дан вектор пространства , то его длина вычисляется по формуле .

Данные формулы (как и формулы длины отрезка) легко выводятся с помощью небезызвестной теоремы Пифагора.

Даны точки и . Найти длину вектора .

Я взял те же точки, что и в Примере 3.

Решение: Сначала найдём вектор :

По формуле вычислим длину вектора:

Ответ:

Не забываем указывать размерность – «единицы»! Всегда ли, кстати, нужно рассчитывать приближенное значение (в данном примере 8,94), если этого не требуется в условии? С моей точки зрения, лишним не будет, отсутствие приближенного значения тянет на придирку. Округление целесообразно проводить до 2-3 знаков после запятой.

Выполним чертеж к задаче:

В чём принципиальное отличие от Примера 3? Отличие состоит в том, что здесь речь идёт о векторе, а не об отрезке. Вектор можно переместить в любую точку плоскости, при этом его лучше переобозначить, например, через .

А в чём сходство Примера 3 и Примера 5? Геометрически очевидно, что длина отрезка равна длине вектора . Так же очевидно, что длина вектора будет такой же. По итогу:

Задачу 3 можно было решить и вторым способом, повторю условие: Даны точки и . Найти длину отрезка .

Вместо применения формулы , поступаем так:
1) Находим вектор .
2) А теперь ссылаемся на то, что длина отрезка равна длине вектора :

Этот способ широко практикуется в ходе решений задач аналитической геометрии.

Вышесказанное справедливо и для пространственного случая

а) Даны точки и . Найти длину вектора .
б) Даны векторы , , и . Найти их длины.

Решения и ответы в конце урока.

Действия с векторами в координатах

В первой части урока мы рассматривали правила сложения векторов и умножения вектора на число. Но рассматривали их с принципиально-графической точки зрения. Посмотрим, как данные правила работают аналитически – когда заданы координаты векторов:

1) Правило сложения векторов. Рассмотрим два вектора плоскости и . Для того, чтобы сложить векторы, нужно сложить их соответствующие координаты: . Как просто. На всякий случай запишу частный случай – формулу разности векторов: . Аналогичное правило справедливо для суммы любого количества векторов, добавим например, вектор и найдём сумму трёх векторов:

Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы , то их суммой является вектор .

2) Правило умножения вектора на число. Ещё проще! Для того чтобы вектор умножить на число , нужно каждую координату данного вектора умножить на число :
.

Для пространственного вектора правило такое же:

Приведённые факты строго доказываются в курсе аналитической геометрии.

Примечание: Данные правила справедливы не только для ортонормированных базисов , но и для произвольного аффинного базиса плоскости или пространства. Более подробно о базисах читайте в статье Линейная (не) зависимость векторов. Базис векторов.

Даны векторы и . Найти и

Решение чисто аналитическое:

Ответ:

Чертеж в подобных задачах строить не надо, тем не менее, геометрическая демонстрация будет весьма полезной. Если считать, что векторы заданы в ортонормированном базисе , то графическое решение задачи будет таким:

Коль скоро речь идет только о векторах в ортонормированном базисе, то оси рисовать не обязательно. Достаточно начертить базисные векторы, причём, где угодно. Ну, и координатную сетку для удобства. Строго говоря, ранее я допустил небольшой огрех – в некоторых чертежах урока тоже можно было не чертить декартову прямоугольную систему координат. Векторам она не нужна, им нужен базис. Впрочем, лучше всегда рисуйте, а то напугаете всех своими знаниями =)

Как видите, графический способ решения привёл к тем же результатам, что и аналитический способ решения. Ещё раз заметьте свободу векторов: любую из трёх «конструкций» можно переместить в любую точку плоскости.

Для векторов в пространстве можно провести аналогичные выкладки. Но там чертежи строить значительно сложнее, поэтому ограничусь аналитическим решением (на практике, собственно, бОльшего и не надо):

Даны векторы и . Найти и

Решение: Для действий с векторами справедлив обычный алгебраический приоритет: сначала умножаем, потом складываем:

Ответ:

И в заключение занятный пример с векторами на плоскости:

Даны векторы . Найти и

Это задача для самостоятельного решения.

Какой вывод? Многие задачи аналитической геометрии прозрачны и просты, главное, не допустить вычислительных ошибок. Следующие рекомендуемые к изучению уроки:

Это, так скажем, вектор-минимум студента =)

Любите векторы, и векторы полюбят вас!

Задание: ,

Пример 2: Решение:
а)

б)

в)

г)

Пример 4: Решение:
По соответствующей формуле: и

Ответ:

Пример 6: и
а) Решение: найдём вектор :

Вычислим длину вектора:

Ответ:

б) Решение:
Вычислим длины векторов:

Пример 9: Решение:

Примечание: Перед выполнением действий можно предварительно раскрыть скобки:

Ответ:

(Переход на главную страницу)

cкидкa 17% на первый зaкaз, при оформлении введите прoмoкoд: 5530-xr4ys

Источник статьи: http://www.mathprofi.ru/vektory_dlya_chainikov.html

Узнаем, как найти координаты вектора

А что, если в задаче нет векторов — есть только точки, лежащие на прямых, и требуется вычислить угол между этими прямыми?

Все просто: зная координаты точек — начала и конца вектора — можно вычислить координаты самого вектора. Чтобы найти координаты вектора, надо из координат его конца вычесть координаты начала.

Вычисление координат векторов

Для того, чтобы использовать метод координат, надо хорошо знать формулы. Их три:

  1. Главная формула — косинус угла φ между векторами a = (x1; y1; z1) и b = (x2; y2; z2):
  2. Уравнение плоскости в трехмерном пространстве: Ax + By + Cz + D = 0, где A, B, C и D — действительные числа, причем, если плоскость проходит через начало координат, D = 0. А если не проходит, то D = 1.
  3. Вектор, перпендикулярный к плоскости Ax + By + Cz + D = 0, имеет координаты: n = (A; B; C).

На первый взгляд, выглядит угрожающе, но достаточно немного практики — и все будет работать великолепно.

Задача. Найти косинус угла между векторами a = (4; 3; 0) и b = (0; 12; 5).

Решение. Поскольку координаты векторов нам даны, подставляем их в первую формулу:

Задача. Составить уравнение плоскости, проходящей через точки M = (2; 0; 1), N = (0; 1; 1) и K = (2; 1; 0), если известно, что она не проходит через начало координат.

Решение. Общее уравнение плоскости: Ax + By + Cz + D = 0, но, поскольку искомая плоскость не проходит через начало координат — точку (0; 0; 0) — то положим D = 1. Поскольку эта плоскость проходит через точки M, N и K, то координаты этих точек должны обращать уравнение в верное числовое равенство.

  • Подставим вместо x, y и z координаты точки M = (2; 0; 1). Имеем: A · 2 + B · 0 + C · 1 + 1 = 0 ⇒ 2A + C + 1 = 0;
  • Аналогично, для точек N = (0; 1; 1) и K = (2; 1; 0) получим уравнения: A · 0 + B · 1 + C · 1 + 1 = 0 ⇒ B + C + 1 = 0;
  • A · 2 + B · 1 + C · 0 + 1 = 0 ⇒ 2A + B + 1 = 0;
  • Итак, у нас есть три уравнения и три неизвестных. Составим и решим систему уравнений:

Получили, что уравнение плоскости имеет вид: − 0,25x − 0,5y − 0,5z + 1 = 0.

Задача. Плоскость задана уравнением 7x − 2y + 4z + 1 = 0. Найти координаты вектора, перпендикулярного данной плоскости.

Решение. Используя третью формулу, получаем n = (7; − 2; 4) — вот и все!

Эта теорема одинаково работает и на плоскости, и в пространстве. Выражение «вычесть координаты» означает, что из координаты x одной точки вычитается координата x другой, затем то же самое надо сделать с координатами y и z. Вот несколько примеров:

Задача. В пространстве расположены три точки, заданные своими координатами: A = (1; 6; 3), B = (3; − 1; 7) и C = (− 4; 3; − 2). Найти координаты векторов AB, AC и BC.

Рассмотрим вектор AB: его начало находится в точке A, а конец — в точке B. Следовательно, чтобы найти его координаты, надо из координат точки B вычесть координаты точки A: AB = (3 − 1; − 1 − 6; 7 − 3) = (2; − 7; 4).

  • Аналогично, начало вектора AC — все та же точка A, зато конец — точка C. Поэтому имеем: AC = (− 4 − 1; 3 − 6; − 2 − 3) = (− 5; − 3; − 5).
  • Наконец, чтобы найти координаты вектора BC, надо из координат точки C вычесть координаты точки B: BC = (− 4 − 3; 3 − (− 1); − 2 − 7) = (− 7; 4; − 9).

Ответ: AB = (2; − 7; 4); AC = (− 5; − 3; − 5); BC = (− 7; 4; − 9)

Обратите внимание на вычисление координат последнего вектора BC: очень многие ошибаются, когда работают с отрицательными числами. Это касается переменной y: у точки B координата y = − 1, а у точки C y = 3. Получаем именно 3 − (− 1) = 4, а не 3 − 1, как многие считают. Не допускайте таких глупых ошибок!

Вычисление направляющих векторов для прямых

Если вы внимательно прочитаете задачу C2, то с удивлением обнаружите, что никаких векторов там нет. Там только прямые да плоскости.

Для начала разберемся с прямыми. Здесь все просто: на любой прямой найдутся хотя бы две различные точки и, наоборот, любые две различные точки задают единственную прямую…

Кто-нибудь понял, что написано в предыдущем абзаце? Я и сам не понял, поэтому объясню проще: в задаче C2 прямые всегда задаются парой точек. Если ввести систему координат и рассмотреть вектор с началом и концом в этих точках, получим так называемый направляющий вектор для прямой:

Зачем нужен этот вектор? Дело в том, что угол между двумя прямыми — это угол между их направляющими векторами. Таким образом, мы переходим от непонятных прямых к конкретным векторам, координаты которых легко считаются. Насколько легко? Взгляните на примеры:

Задача. В кубе ABCDA1B1C1D1 проведены прямые AC и BD1. Найдите координаты направляющих векторов этих прямых.

Поскольку длина ребер куба в условии не указана, положим AB = 1. Введем систему координат с началом в точке A и осями x, y, z, направленными вдоль прямых AB, AD и AA1 соответственно. Единичный отрезок равен AB = 1.

Теперь найдем координаты направляющего вектора для прямой AC. Нам потребуются две точки: A = (0; 0; 0) и C = (1; 1; 0). Отсюда получаем координаты вектора AC = (1 − 0; 1 − 0; 0 − 0) = (1; 1; 0) — это и есть направляющий вектор.

Теперь разберемся с прямой BD1. На ней также есть две точки: B = (1; 0; 0) и D1 = (0; 1; 1). Получаем направляющий вектор BD1 = (0 − 1; 1 − 0; 1 − 0) = (− 1; 1; 1).

Ответ: AC = (1; 1; 0); BD1 = (− 1; 1; 1)

Задача. В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, проведены прямые AB1 и AC1. Найдите координаты направляющих векторов этих прямых.

Введем систему координат: начало в точке A, ось x совпадает с AB, ось z совпадает с AA1, ось y образует с осью x плоскость OXY, которая совпадает с плоскостью ABC.

Для начала разберемся с прямой AB1. Тут все просто: у нас есть точки A = (0; 0; 0) и B1 = (1; 0; 1). Получаем направляющий вектор AB1 = (1 − 0; 0 − 0; 1 − 0) = (1; 0; 1).

Теперь найдем направляющий вектор для AC1. Все то же самое — единственное отличие в том, что у точки C1 иррациональные координаты. Итак, A = (0; 0; 0), поэтому имеем:

Небольшое, но очень важное замечание насчет последнего примера. Если начало вектора совпадает с началом координат, вычисления резко упрощаются: координаты вектора просто равны координатам конца.

К сожалению, это верно лишь для векторов. Например, при работе с плоскостями присутствие на них начала координат только усложняет выкладки.

Вычисление нормальных векторов для плоскостей

Нормальные векторы — это не те векторы, у которых все в порядке, или которые чувствуют себя хорошо. По определению, нормальный вектор (нормаль) к плоскости — это вектор, перпендикулярный данной плоскости.

Другими словами, нормаль — это вектор, перпендикулярный любому вектору в данной плоскости. Наверняка вы встречали такое определение — правда, вместо векторов речь шла о прямых. Однако чуть выше было показано, что в задаче C2 можно оперировать любым удобным объектом — хоть прямой, хоть вектором.

Еще раз напомню, что всякая плоскость задается в пространстве уравнением Ax + By + Cz + D = 0, где A, B, C и D — некоторые коэффициенты. Не умаляя общности решения, можно полагать D = 1, если плоскость не проходит через начало координат, или D = 0, если все-таки проходит. В любом случае, координаты нормального вектора к этой плоскости равны n = (A; B; C).

Итак, плоскость тоже можно успешно заменить вектором — той самой нормалью. Всякая плоскость задается в пространстве тремя точками. Как найти уравнение плоскости (а следовательно — и нормали), мы уже обсуждали в самом начале статьи. Однако этот процесс у многих вызывает проблемы, поэтому приведу еще парочку примеров:

Задача. В кубе ABCDA1B1C1D1 проведено сечение A1BC1. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA1 соответственно.

Поскольку плоскость не проходит через начало координат, ее уравнение выглядит так: Ax + By + Cz + 1 = 0, т.е. коэффициент D = 1. Поскольку эта плоскость проходит через точки A1, B и C1, то координаты этих точек обращают уравнение плоскости в верное числовое равенство.

  1. Подставим вместо x, y и z координаты точки A1 = (0; 0; 1). Имеем: A · 0 + B · 0 + C · 1 + 1 = 0 ⇒ C + 1 = 0 ⇒ C = − 1;
  2. Аналогично, для точек B = (1; 0; 0) и C1 = (1; 1; 1) получим уравнения: A · 1 + B · 0 + C · 0 + 1 = 0 ⇒ A + 1 = 0 ⇒ A = − 1;
  3. A · 1 + B · 1 + C · 1 + 1 = 0 ⇒ A + B + C + 1 = 0;
  4. Но коэффициенты A = − 1 и C = − 1 нам уже известны, поэтому остается найти коэффициент B: B = − 1 − A − C = − 1 + 1 + 1 = 1.
  5. Получаем уравнение плоскости: − A + B − C + 1 = 0, Следовательно, координаты нормального вектора равны n = (− 1; 1; − 1).

Задача. В кубе ABCDA1B1C1D1 проведено сечение AA1C1C. Найти нормальный вектор для плоскости этого сечения, если начало координат находится в точке A, а оси x, y и z совпадают с ребрами AB, AD и AA1 соответственно.

В данном случае плоскость проходит через начало координат, поэтому коэффициент D = 0, а уравнение плоскости выглядит так: Ax + By + Cz = 0. Поскольку плоскость проходит через точки A1 и C, координаты этих точек обращают уравнение плоскости в верное числовое равенство.

  • Подставим вместо x, y и z координаты точки A1 = (0; 0; 1).
  • Имеем: A · 0 + B · 0 + C · 1 = 0 ⇒ C = 0;
  • Аналогично, для точки C = (1; 1; 0) получим уравнение: A · 1 + B · 1 + C · 0 = 0 ⇒ A + B = 0 ⇒ A = − B;
  • Положим B = 1.
  • Тогда A = − B = − 1, и уравнение всей плоскости имеет вид: − A + B = 0,
  • Следовательно, координаты нормального вектора равны n = (− 1; 1; 0).

Вообще говоря, в приведенных задачах надо составлять систему уравнений и решать ее. Получится три уравнения и три переменных, но во втором случае одна из них будет свободной, т.е. принимать произвольные значения. Именно поэтому мы вправе положить B = 1 — без ущерба для общности решения и правильности ответа.

Координаты середины отрезка

Очень часто в задаче C2 требуется работать с точками, которые делят отрезок пополам. Координаты таких точек легко считаются, если известны координаты концов отрезка.

Итак, пусть отрезок задан своими концами — точками A = (xa; ya; za) и B = (xb; yb; zb). Другими словами, координаты середины отрезка — это среднее арифметическое координат его концов.

Задача. Единичный куб ABCDA1B1C1D1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA1 соответственно, а начало координат совпадает с точкой A. Точка K — середина ребра A1B1. Найдите координаты этой точки.

Поскольку точка K — середина отрезка A1B1, ее координаты равных среднему арифметическому координат концов. Запишем координаты концов: A1 = (0; 0; 1) и B1 = (1; 0; 1).

Задача. Единичный куб ABCDA1B1C1D1 помещен в систему координат так, что оси x, y и z направлены вдоль ребер AB, AD и AA1 соответственно, а начало координат совпадает с точкой A. Найдите координаты точки L, в которой пересекаются диагонали квадрата A1B1C1D1.

Из курса планиметрии известно, что точка пересечения диагоналей квадрата равноудалена от всех его вершин. В частности, A1L = C1L, т.е. точка L — это середина отрезка A1C1. Но A1 = (0; 0; 1), C1 = (1; 1; 1).

Координаты вектора на плоскости

Координаты вектора на плоскости

Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы:

Векторы и ортогональны. Ортогональны = Перпендикулярны. Вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность. Обозначение: ортогональность векторов записывают привычным значком перпендикулярности.

Рассматриваемые векторы называют координатными векторами или ортами. Данные векторы образуют базис на плоскости. Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.

Любой вектор плоскости единственным образом выражается в виде:, где – числа, которые называются координатами вектора в данном базисе. А само выражение называется разложением вектора по базису .

Простейшие задачи аналитической геометрии.Действия с векторами в координатах

Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть. Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии.

Как найти вектор по двум точкам?

Координаты точек – это обычные координаты в прямоугольной системе координат. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис.

Как найти длину отрезка?

Отрезок – это не вектор, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Как найти длину вектора?

Не забываем указывать размерность – «единицы»! Всегда ли, кстати, нужно рассчитывать приближенное значение (в данном примере 8,94), если этого не требуется в условии? Округление целесообразно проводить до 2-3-х знаков после запятой.

Отличие состоит в том, что здесь речь идёт о векторе, а не об отрезке. Вектор можно переместить в любую точку плоскости.

А в чём сходство Примера 3 и Примера 5? Геометрически очевидно, что длина отрезка равна длине вектора . Так же очевидно, что длина вектора будет такой же.

Метод координат. Координаты вектора

Итак, построим прямоугольную систему координат. От точки О начала координат отложим единичные векторы и . Т.е. векторы длины, которых равны единице.

Причём, направление вектора совпадает с направлением оси , а направление вектора совпадает с направлением оси.

Векторы называются координатными векторами. Коэффициенты разложения вектора по координатным векторам называют координатами вектора в данной системе координат. Напомним, что координаты вектора записывают в фигурных скобках через точку с запятой.

  • Если векторы равны, то их разложения по векторам и также будут равны, а значит, равны будут и коэффициенты разложения.

Вспомним ещё один особенный случай — противоположные векторы. Их разложения противоположны. Координатами вектора являются числа 8 и –1. Значит, чтобы переместиться из точки О на вектор , сначала нужно переместиться на вектор , а затем на вектор . Соединив точку О с конечной точкой, получим вектор .

Далее изобразим вектор . Для этого из точки О переместимся на вектор . Тем самым получим искомый вектор.

Чтобы из точки О переместиться на вектор , сначала переместимся на вектор , а затем на вектор . Проведём вектор из точки О в конечную точку. Так мы получили вектор .

Теперь давайте вспомним правила, позволяющие по координатам векторов находить координаты их суммы, разности и произведения вектора на число.

  • Каждая координата суммы двух и более векторов равна сумме соответствующих координат этих векторов.
  • Каждая координата разности двух векторов равна разности соответствующих координат данных векторов.
  • Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.

Радиус-вектором точки называют вектор, начало которого совпадает с точкой начала координат, а конец — с данной точкой.

Пользуясь этим утверждением, выразим координаты вектора через координаты его начала и конца. Пусть точка А имеет координаты , а точка В имеет координаты .

  • Каждая координата вектора равна разности соответствующих координат его конца и начала.
  • Каждая координата середины отрезка равна полусумме соответствующих координат его концов.

Как найти вектор по двум точкам?

Из координат конца вектора нужно вычесть соответствующие координаты начала вектора.

Координаты точек – это обычные координаты в прямоугольной системе координат. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .

  • Правило сложения векторов. Для того, чтобы сложить векторы, необходимо сложить их соответствующие координаты.

Аналогичное правило справедливо для суммы любого количества векторов, например, найдём сумму трёх векторов. Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы , то их суммой является вектор .

  • Правило умножения вектора на число. Для того чтобы вектор умножить на число , необходимо каждую координату данного вектора умножить на число. Для пространственного вектора правило такое же.

Нахождение координат вектора через координаты точек. Как найти вектор по двум точкам

Отложим от начала координат единичные векторы, то есть векторы, длины которых равны единице. Направление вектора i→ должно совпадать с осью Ox, а направление вектора j→ с осью Oy. Векторы i→ и j→ называют координатными векторами.

Координатные векторы не коллинеарны. Поэтому любой вектор p→ можно разложить по векторам p→=xi→+yj→. Коэффициенты x и y определяются единственным образом. Коэффициенты разложения вектора p→ по координатным векторам называются координатами вектора p→ в данной системе координат.

Координаты вектора записываются в фигурных скобках p→x; y. На рисунке вектор OA→ имеет координаты 2; 1, а вектор b→ имеет координаты 3;-2. Нулевой вектор представляется в виде 0→0; 0.

Если векторы a→ и b→ равны, то и y1=y2. Запишем это так: a→=x1i→+y1j→=b→=x2i→+y2j→, значит x1=x2, y1=y2 . Таким образом, координаты равных векторов соответственно равны.

Если точка координат не совпадает с его началом системы координат, тогда рассмотрим задачу. Пусть в декартовой системе координат на Oxy заданы координаты точек начала и конца AB→: Axa, ya, Bxb, yb. Найти координаты заданного вектора.

Изобразим координатную ось. Из формулы сложения векторов имеем OA→+AB→=OB→, где O – начало координат. Отсюда следует, что AB→=OB→-OA→.

OA→ и OB→ – это радиус-векторы заданных точек А и В, значит координаты точек имеют значения OA→=xa, ya, OB→=xb, yb.

По правилу операций над векторами найдем AB→=OB→-OA→=xb-xa, yb-ya.

Нахождение в трехмерном пространстве проходит по такому же принципу, только для трех точек. Для нахождения координат вектора, необходимо найти разность его точек конца и начала.

Найти координаты OA→ и AB→ при значении координат точек A(2,-3), B(-4,-1).

Для начала определяется радиус-вектор точки A. OA→=(2,-3). Чтобы найти AB→, нужно вычесть значение координат точек начала из координат точек конца. Получаем: AB→=(-4-2,-1-(-3))=(-6, 2).

Ответ: OA→=(2,-3), AB→=(-6,-2).

Задано трехмерное пространство с точкой A=(3, 5, 7), AB→=(2, 0,-2). Найти координаты конца AB→.

  • Подставляем координаты точки A: AB→=(xb-3, yb-5, zb-7).
  • По условию известно, что AB→=(2, 0,-2).
  • Известно, что равенство векторов справедливо тогда, когда координаты равны соответственно. Составим систему уравнений: xb-3=2yb-5=0zb-7=-2
  • Отсюда следует, что координаты точки B AB→равны: xb=5yb=5zb=5

Источник статьи: http://chhmt.org.ru/sposoby-reshenij/uznaem-kak-najti-koordinaty-vektora.html

Координаты точки и координаты вектора. Как найти координаты вектора

Марина Николаевна Ковальчук

Эксперт по предмету «Геометрия»

С нами работают 108 689 преподавателей из 185 областей знаний. Мы публикуем только качественные материалы

Прямоугольная система координат

Чтобы определить понятие координат точек, нам необходимо ввести систему координат, в которой мы и будем определять ее координаты. Одна и та же точка в разных системах координат может иметь различные координаты. Здесь мы будем рассматривать прямоугольную систему координат в пространстве.

Возьмем в пространстве точку $O$ и введем для нее координаты $(0,0,0)$. Назовем ее началом системы координат. Проведем через нее три взаимно перпендикулярные оси $Ox$, $Oy$ и $Oz$, как на рисунке 1. Эти оси будут называться осями абсцисс, ординат и аппликат, соответственно. Осталось только ввести масштаб на осях (единичный отрезок) – прямоугольная система координат в пространстве готова (рис. 1)

Рисунок 1. Прямоугольная система координат в пространстве. Автор24 — интернет-биржа студенческих работ

Координаты точки

Теперь разберем, как определяют в такой системе координаты любой точки. Возьмем произвольную точку $M$ (рис. 2).

Рисунок 2. Произвольная точка. Автор24 — интернет-биржа студенческих работ

Построим на координатных осях прямоугольный параллелепипед, так, что точки $O$ и $M$ противоположные его вершины (рис. 3).

Рисунок 3. Построение прямоугольного параллелепипеда. Автор24 — интернет-биржа студенческих работ

Тогда точка $M$ будет иметь координаты $(X,Y,Z)$, где $X$ – значение на числовой оси $Ox$, $Y$ – значение на числовой оси $Oy$, а $Z$ – значение на числовой оси $Oz$.

Необходимо найти решение следующей задачи: написать координаты вершин параллелепипеда, изображенного на рисунке 4.

Рисунок 4. Параллелепипед. Автор24 — интернет-биржа студенческих работ

Точка $O$ начало координат, следовательно, $O=(0,0,0)$.

Точки $Q$, $N$ и $R$ лежат на осях $Ox$, $Oz$ и $Oy$, соответственно, значит

Точки $S$, $L$ и $M$ лежат в плоскостях $Oxz$, $Oxy$ и $Oyz$, соответственно, значит

Точка $P$ имеет координаты $P=(2,2.5,1.5)$

Координаты вектора по двум точкам и формула нахождения

Чтобы узнать, как найти вектор по координатам двух точек, необходимо рассмотреть введенную нами ранее систему координат. В ней от точки $O$ по направлению оси $Ox$ отложим единичный вектор $overline$, по направлению оси $Oy$ — единичный вектор $overline$, а единичный вектор $overline$ нужно направлять по оси $Oz$.

Для того чтобы ввести понятие координат вектора, введем следующую теорему (здесь ее доказательство мы рассматривать не будем).

Произвольный вектор в пространстве может быть разложен по трем любым векторам, которые не лежат в одной плоскости, причем коэффициенты в таком разложении будут единственным образом определены.

Математически это выглядит следующим образом:

Так как векторы $overline$, $overline$ и $overline$ построены на координатных осях прямоугольной системы координат, то они, очевидно, не будут принадлежать одной плоскости. Значит любой вектор $overline<δ>$ в этой системе координат, по теореме 1, может принимать следующий вид

Три вектора $overline$, $overline$ и $overline$ будут называться координатными векторами.

Коэффициенты перед векторами $overline$, $overline$ и $overline$ в разложении (1) будут называться координатами этого вектора в заданной нами системе координат, то есть

Линейные операции над векторами

Теорема о сумме: Координаты суммы любого числа векторов определяются суммой их соответствующих координат.

Доказательство.

Будем доказывать эту теорему для 2-х векторов. Для 3-х и более векторов доказательство строится аналогичным образом. Пусть $overline<α>=(α_1,α_2,α_3)$, $overline<β>=(β_1,β_2 ,β_3)$.

Эти вектора можно записать следующим образом

$overline<α>=α_1overline+ α_2overline+α_3overline$, $overline<β>=β_1overline+ β_2overline+β_3overline$

$overline<α>+overline<β>=α_1overline+α_2overline+α_3overline+β_1overline+ β_2overline+β_3overline=(α_1+β_1 )overline+(α_2+β_2 )overline+(α_3+β_3)overline$

Замечание: Аналогично, находится решение разности нескольких векторов.

Теорема о произведении на число: Координаты произведения произвольного вектора на действительное число определяется произведением координат на это число.

Доказательство.

Возьмем $overline<α>=(α_1,α_2,α_3)$, тогда $overline<α>=α_1overline+α_2overline+α_3overline$, а

$loverline<α>=l(α_1overline+ α_2overline+α_3overline)=lα_1overline+ lα_2overline+lα_3overline$

Пусть $overline<α>=(3,0,4)$, $overline<β>=(2,-1,1)$. Найти $overline<α>+overline<β>$, $overline<α>-overline<β>$ и $3overline<α>$.

$3overline<α>=(3cdot 3,3cdot 0,3cdot 4)=(9,0,12)$

Источник статьи: http://spravochnick.ru/geometriya/metod_koordinat_v_prostranstve/koordinaty_tochki_i_koordinaty_vektora_kak_nayti_koordinaty_vektora/

Как найти вектор по двум точкам?

Если даны две точки плоскости и , то вектор имеет следующие координаты:

Если даны две точки пространства и , то вектор имеет следующие координаты:

То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора.

Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.

Даны две точки плоскости и . Найти координаты вектора

Решение: по соответствующей формуле:

Как вариант, можно было использовать следующую запись:

Эстеты решат и так:

Лично я привык к первой версии записи.

Ответ:

По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:

Обязательно нужно понимать различие между координатами точек и координатами векторов:

Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости. Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .

Записи координат точек и координат векторов вроде бы схожи: , асмысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

Дамы и господа, набиваем руку:

а) Даны точки и . Найти векторы и .
б) Даны точки и . Найти векторы и .
в) Даны точки и . Найти векторы и .
г) Даны точки . Найти векторы .

Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится ;-). Чертежи делать не нужно. Решения и ответы в конце урока.

Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)

Как найти длину отрезка?

Длина, как уже отмечалось, обозначается знаком модуля.

Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

Даны точки и . Найти длину отрезка .

Решение: по соответствующей формуле:

Ответ:

Для наглядности выполню чертёж

Отрезок это не вектор, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

Обратите внимание на важный технический приёмвынесение множителя из-под корня. В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

Вот другие распространенные случаи:

Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
Готово.

Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

Давайте заодно повторим возведение корней в квадрат и другие степени:

Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

Задание для самостоятельного решения с отрезком в пространстве:

Даны точки и . Найти длину отрезка .

Решение и ответ в конце урока.

Как найти длину вектора?

Если дан вектор плоскости , то его длина вычисляется по формуле .

Если дан вектор пространства , то его длина вычисляется по формуле .

Данные формулы (как и формулы длины отрезка) легко выводятся с помощью небезызвестной теоремы Пифагора.

Даны точки и . Найти длину вектора .

Я взял те же точки, что и в Примере 3.

Решение: Сначала найдём вектор :

По формуле вычислим длину вектора:

Ответ:

Не забываем указывать размерность – «единицы»! Всегда ли, кстати, нужно рассчитывать приближенное значение (в данном примере 8,94), если этого не требуется в условии? С моей точки зрения, лишним не будет, отсутствие приближенного значения тянет на придирку. Округление целесообразно проводить до 2-3 знаков после запятой.

Выполним чертеж к задаче:

В чём принципиальное отличие от Примера 3? Отличие состоит в том, что здесь речь идёт о векторе, а не об отрезке. Вектор можно переместить в любую точку плоскости.

А в чём сходство Примера 3 и Примера 5? Геометрически очевидно, что длина отрезка равна длине вектора . Так же очевидно, что длина вектора будет такой же. По итогу:

Задачу 3 можно было решить и вторым способом, повторю условие: Даны точки и . Найти длину отрезка .

Вместо применения формулы , поступаем так:
1) Находим вектор .
2) А теперь ссылаемся на то, что длина отрезка равна длине вектора :

Этот способ широко практикуется в ходе решений задач аналитической геометрии.

Вышесказанное справедливо и для пространственного случая

а) Даны точки и . Найти длину вектора .
б) Даны векторы , , и . Найти их длины.

Решения и ответы в конце урока.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Источник статьи: http://cyberpedia.su/13xe2b.html

Метод координат

Метод координат – это твоя «палочка-выручалочка»! Он позволит тебе свести многие задачи по геометрии к простой алгебре.

Метод в особенности хорош, когда ты неуверенно чувствуешь себя в построении пространственных фигур, сечений и т. д.

Конечная цель статьи – научить тебя пользоваться методом координат, чтобы решать задачи ЕГЭ повышенной сложности для трехмерных фигур.

Метод координат – коротко о главном

Вектор – направленный отрезок. ( displaystyle A) – начало вектора, ( displaystyle B)-конец вектора.
Вектор обозначается ( displaystyle a) или ( displaystyle overline).

Абсолютная величина вектора – длина отрезка, изображающего вектор. Обозначается, как ( displaystyle left| a right|).

Координаты вектора ( displaystyle a):

Произведение векторов: ( displaystyle lambda overline(<_<1>>,text< ><_<2>>)text< >=

Скалярное произведение векторов: Скалярное произведение векторов равно произведению их абсолютных величин на косинус угла между ними:

Метод координат — способ определять положение точки или тела с помощью чисел или других символов (например, положение шахматных фигур на доске определяется с помощью чисел и букв).

Система координат

С чего было бы логично начать обсуждение метода координат? Наверное, с понятия системы координат. Вспомни, когда ты с нею впервые столкнулся.

Мне кажется, что в 7 классе, когда ты узнал про существование линейной функции ( y=ax+b), например, ( y=2-3).

Напомню, ты строил ее по точкам. Помнишь?

Ты выбирал произвольное число ( x), подставлял ее в формулу ( y=2-3) и вычислял таким образом ( y).

Например, если ( x=0), то ( y=2cdot 0-3=-3), если же ( x=1), то ( y=2cdot 1-3=-1)и т. д.

Что же ты получал в итоге?

А получал ты точки с координатами: ( Aleft( 0,-3 right)) и ( Bleft( 1,-1 right)).

Далее ты рисовал «крестик» (систему координат ( X0Y)), выбирал на ней масштаб (сколько клеточек у тебя будет единичным отрезком) и отмечал на ней полученные тобою точки, которые затем соединял прямой линией, полученная линия и есть график функции ( y=2-3).

Тут есть несколько моментов, которые стоит объяснить тебе чуть подробнее:

  • Единичный отрезок ты выбираешь из соображений удобства, так, чтобы все красиво и компактно умещалось на рисунке;
  • Принято, что ось ( displaystyle X) идет слева направо, а ось ( displaystyle Y) – cнизу вверх;
  • Они пересекаются под прямым углом, а точка их пересечения называется началом координат. Она обозначается буквой ( displaystyle O);
  • В записи координаты точки, например ( displaystyle Aleft( 0,-3 right)), слева в скобках стоит координата точки по оси ( displaystyle X), а справа, по оси ( displaystyle Y). В частности, ( displaystyle Aleft( 0,-3 right)) просто означает, что у точки ( displaystyle A) ( displaystyle x=0,

y=-3.);

  • Для того, чтобы задать любую точку на координатной оси, требуется указать ее координаты (2 числа);
  • Для любой точки, лежащей на оси ( displaystyle Ox,), ( displaystyle y=0.);
  • Для любой точки, лежащей на оси ( displaystyle Oy), ( displaystyle x=0.);
  • Ось ( displaystyle Ox) называется осью абсцисс;
  • Ось ( displaystyle Oy) называется осью ординат.
  • Векторы

    Теперь давай с тобой сделаем следующий шаг: отметим две точки ( displaystyle Aleft( <_<1>>,<_<1>> right)) ( displaystyle Bleft( <_<2>>,<_<2>> right)).

    Соединим эти две точки отрезком. И поставим стрелочку так, как будто мы проводим отрезок из точки ( displaystyle A) к точке ( displaystyle B):

    То есть мы сделаем наш отрезок направленным!

    Вспомни, как еще называется направленный отрезок? Верно, он называется вектором!

    Вектором называется направленный отрезок, имеющий начало и конец.

    Таким образом, если мы соединим точку ( displaystyle A) c точкой ( displaystyle B), причем началом у нас будет точка A, а концом – точка B, то мы получим вектор ( displaystyle overrightarrow).

    Это построение ты тоже делал в 8 классе, помнишь?

    Координаты вектора

    Оказывается, векторы, как и точки, можно обозначать двумя цифрами: эти цифры называются координатами вектора.

    Вопрос: как ты думаешь, достаточно ли нам знать координаты начала и конца вектора, чтобы найти его координаты?

    Оказывается, что да! И делается это очень просто:

    Координаты вектора = координаты точки конца – координаты точки начала.

    Таким образом, так как в векторе ( displaystyle overrightarrow) точка ( displaystyle Aleft( <_<1>>,<_<1>> right)) – начало, а ( displaystyle Bleft( <_<2>>,<_<2>> right)) – конец, то вектор ( displaystyle overrightarrow) имеет следующие координаты:

    Например, если ( displaystyle Aleft( 2,0 right))( displaystyle Bleft( 1,2 right)), то координаты вектора ( displaystyle overrightarrow)

    ( displaystyle overrightarrowleft( 1-2,2-0 right)=overrightarrowleft( -1,2 right))

    Теперь давай сделаем наоборот, найдем координаты вектора ( displaystyle overrightarrow).

    Что нам для этого нужно поменять? Да, нужно поменять местами начало и конец: теперь начало вектора будет в точке ( displaystyle B), а конец – в точке ( displaystyle A).

    ( displaystyle overrightarrowleft( 2-1,text< >!!

    Посмотри внимательно, чем отличаются векторы ( displaystyle overrightarrow) и ( displaystyle overrightarrow)?

    Единственное их отличие – это знаки в координатах. Они противоположны. Этот факт принято записывать вот так:

    Иногда, если не оговаривается специально, какая точка является началом вектора, а какая – концом, то векторы обозначают не двумя заглавными буквами, а одной строчной, например: ( displaystyle ), ( displaystyle >) и т. д.

    Еще больше о векторах и проекциях (эту тему мы непременно затронем) ты можешь прочитать в статье по физике “Большая теория по векторам” 🙂

    Теперь немного потренируйся сам и найди координаты следующих векторов:

    Kleft( 0,-3 right));
    ( displaystyle overrightarrow

    Kleft( 2,3 right));
    ( displaystyle overrightarrow

    • ( displaystyle overrightarrowleft( -1,-5 right));
    • ( displaystyle overrightarrowleft( 3,3 right));
    • ( displaystyle overrightarrowleft( -2,sqrt<2>-3 right)).

    А теперь реши задачку чуть посложнее:

    Век­тор ( displaystyle overrightarrow) с на­ча­лом в точке ( displaystyle Aleft( 2;

    4 right)) имеет ко­ор­ди­на­ты ( displaystyle left( 6;

    2 right)). Най­ди­те абс­цис­су точки ( displaystyle B).

    Все тоже довольно прозаично: пусть ( displaystyle (x,y)) – координаты точки ( displaystyle B). Тогда

    Систему я составил по определению того, что такое координаты вектора. Тогда точка ( displaystyle B) имеет координаты ( displaystyle left( 8,6 right)). Нас интересует абсцисса. Тогда

    Ответ: ( displaystyle 8)

    Действия с векторами

    Что еще можно делать с векторами?

    Да почти все то же самое, что и с обычными числами:

    • Векторы можно складывать друг с другом;
    • Векторы можно вычитать друг из друга;
    • Векторы можно умножать (или делить) на произвольное ненулевое число;
    • Векторы можно умножать друг на друга.

    Что же происходит при выполнении этих действий с координатами векторов?

    1. При сложении (вычитании) двух векторов, мы складываем (вычитаем) поэлементно их координаты.

    2. При умножении (делении) вектора на число, все его координаты умножаются (делятся) на это число:

    Сложение и вычитание векторов (визуализация)

    Кстати, все эти операции имеют вполне наглядное геометрическое или визуальное представление.

    Например, правило треугольника (или параллелограмма) для сложения и вычитания.

    Сложение векторов по правилу треугольника:

    Вычитание векторов по правилу треугольника:

    Сложение векторов по правилу параллелограмма:

    Вектор растягивается или сжимается или меняет направление при умножении или делении на число:

    Най­ди­те сумму ко­ор­ди­нат век­то­ра ( vec+vec).

    Вектор растягивается или сжимается или меняет направление при умножении или делении на число:

    Давай вначале найдем координаты каждого из векторов.

    Оба они имеют одинаковое начало – точку начала координат. Концы у них разные.

    Тогда сумма координат полученного вектора равна ( 20).

    Теперь реши сам следующую задачу:

    Найти сумму координат вектора ( 3vec-2vec)

    Расстояние между двумя точками на координатной плоскости

    Давай рассмотрим теперь следующую задачу: у нас есть две точки на координатной плоскости. Как найти расстояние между ними?

    Обозначим расстояние между ними через ( d). Давай сделаем для наглядности следующий чертеж:

    А также из точки ( <

    _<1>>) провел линию, параллельную оси ( Ox), а из точки ( <

    _<2>>) провел линию, параллельную оси ( Oy).

    Они пересеклись в точке ( R), образовав при этом замечательную фигуру. Чем она замечательна?

    Да мы с тобой почти что все знаем про прямоугольный треугольник. Ну уж теорему Пифагора – точно!

    Искомый отрезок – это гипотенуза этого треугольника, а отрезки ( <

    _<1>>R,

    Чему равны координаты точки ( R)?

    Да, их несложно найти по картинке: ( Rleft( <_<2>>,<_<1>> right).

    <

    _<2>>R) параллельны осям ( Ox) и ( Oy) соответственно, то их длины легко найти: если обозначить длины отрезков ( <

    _<1>>R,

    <

    _<2>>R) соответственно через ( left| <

    _<1>>Rleft| ,

    Теперь воспользуемся теоремой Пифагора. Длины катетов нам известны, гипотенузу мы найдем:

    Таким образом, расстояние между двумя точками – это корень из суммы квадратов разностей из координат.

    Или же – расстояние между двумя точками – это длина отрезка, их соединяющего.

    Легко заметить, что расстояние между точками не зависит от направления.

    • Длина вектора = корень из суммы квадратов его координат;
    • Найти расстояние между двумя точками = найти длину вектора, их соединяющего (в любом направлении);
    • Длины векторов, соединяющих две точки в разном направлении, равны.

    Давай немного поупражняемся в вычислении расстояния между двумя точками:

    Например, если ( Aleft( 1,2 right),

    Bleft( 3,4 right)), то расстояние между ( A) и ( B) равно

    Или пойдем по-другому: найдем координаты вектора ( overrightarrow)

    ( overrightarrowleft( 3-1,4-2 right)=overrightarrowleft( 2,2 right))

    Теперь немного потренируйся сам:

    Задание. Найти расстояние между указанными точками:

    Bleft( 5,2sqrt <3>right));
    ( Cleft( 2,4 right),

    Dleft( 1,-5 right));
    ( Fleft( sqrt<12>,1 right),

    Вот еще пара задачек на ту же формулу, правда звучат они немного по-другому:

    1. Най­ди­те квад­рат длины век­то­ра ( vec-vec).

    2. Най­ди­те квад­рат длины век­то­ра ( overrightarrow)

    Я так думаю, ты с ними без труда справился? Проверяем:

    1. А это на внимательность) Мы уже нашли координаты векторов ( displaystyle ) и ( displaystyle >) ранее: ( displaystyle vecleft( 2,6 right),

    2. Найдем координаты вектора ( displaystyle overrightarrow=overrightarrowleft( 8-2,6-4 right)=overrightarrowleft( 6,2 right))

    Тогда квадрат его длины равен

    Ничего сложного, правда? Обычная арифметика, не более того.

    Следующие задачки нельзя однозначно классифицировать, они скорее на общую эрудицию и на умение рисовать простенькие картинки.

    Задача 1. Най­ди­те синус угла на­кло­на от­рез­ка, со­еди­ня­ю­ще­го точки ( displaystyle Oleft( 0;

    0 right)),( displaystyle Aleft( 6;

    Как мы будем поступать здесь?

    Нужно найти синус угла между ( displaystyle OA) и осью ( displaystyle Ox).

    А где мы умеем искать синус? Верно, в прямоугольном треугольнике.

    Так что нам нужно сделать? Построить этот треугольник!

    Поскольку координаты точки ( displaystyle A-6) и ( displaystyle 8), то отрезок ( displaystyle OB) равен ( displaystyle 6), а отрезок ( displaystyle AB-8).

    Нам нужно найти синус угла ( displaystyle angle AOB).

    Напомню тебе, что синус – это отношение противолежащего катета к гипотенузе, тогда

    ( displaystyle sinangle AOB=frac)

    Ты можешь сделать это двумя способами: по теореме Пифагора (катеты-то известны!) или по формуле расстояния между двумя точками (на самом деле одно и то же, что и первый способ!).

    ( displaystyle sinangle AOB=frac=frac<8><10>=0.8)

    Ответ: ( displaystyle 0.8)

    Следующая задача покажется тебе еще проще. Она – на координаты точки.

    Задача 2. Из точки ( displaystyle Aleft( 6;8 right)) опу­щен пер­пен­ди­ку­ляр на ось абс­цисс. Най­ди­те абс­цис­су ос­но­ва­ния пер­пен­ди­ку­ля­ра.

    Основание перпендикуляра – это та точка, в которой он пересекает ось абсцисс (ось ( displaystyle Ox)) у меня это точка ( displaystyle B).

    По рисунку видно, что ( displaystyle B) имеет координаты: ( displaystyle Bleft( 6,0 right)).

    Нас интересует абсцисса – то есть «иксовая» составляющая. Она равна ( displaystyle 6).

    Ответ: ( displaystyle 6).

    Задача 3. В условиях предыдущей задачи найти сумму расстояний от точки ( displaystyle A) до осей координат.

    Задача – вообще элементарная, если знать, что такое расстояние от точки до осей.

    Я надеюсь, но все же напомню тебе:

    Расстояние от точки до осей координат – это длины перпендикуляров, опущенных из точки к осям.

    Итак, на моем рисунке, расположенном чуть выше, я уже изобразил один такой перпендикуляр. К какой он оси?

    И чему же равна тогда его длина?

    Она равна ( displaystyle 8).

    Теперь сам проведи перпендикуляр к оси ( displaystyle Oy) и найди его длину. Она будет равна ( displaystyle 6), ведь так?

    Тогда их сумма равна ( displaystyle 14).

    Ответ: ( displaystyle 14).

    Задача 4. В условиях задачи 2, найдите ординату точки, симметричной точке ( displaystyle A) относительно оси абсцисс.

    Я думаю, тебе интуитивно ясно, что такое симметрия?

    Очень многие объекты ею обладают: многие здания, столы, самолеты, многие геометрические фигуры: шар, цилиндр, квадрат, ромб и т. д.

    Грубо говоря, симметрию можно понимать вот как: фигура состоит из двух (или более) одинаковых половинок. Такая симметрия называется осевой.

    Это как раз та линия, по которой фигуру можно, условно говоря, «разрезать» на одинаковые половинки (на данной картинке ось симметрии – прямая ( displaystyle l)):

    Теперь давай вернемся к нашей задаче.

    Нам известно, что мы ищем точку, симметричную относительно оси ( displaystyle Ox).

    Тогда эта ось – ось симметрии.

    Попробуй сам отметить такую точку. А теперь сравни с моим решением:

    Хорошо! У найденной точки нас интересует ордината.

    Она равна ( displaystyle -8)

    Ответ: ( displaystyle -8)

    А теперь скажи мне, подумав ( displaystyle 10) секунд, чему будет равна абсцисса точки, симметричной точке A относительно оси ординат?

    Каков твой ответ? Правильный ответ: ( displaystyle -6).

    В общем случае правило можно записать вот так:

    Ну и теперь совсем страшная задача: найти координаты точки, симметричной точке ( displaystyle A), относительно начала координат.

    Ты вначале подумай сам, а потом посмотри на мой рисунок!

    Ответ: ( displaystyle left( -6,-8 right))

    Теперь задачка на параллелограмм:

    Задача 5. Точки ( displaystyle Oleft( 0;

    ) яв­ля­ют­ся вер­ши­на­ми па­рал­ле­ло­грам­ма. Най­ди­те ор­ди­на­ту точки ( displaystyle B).

    Можно решать эту задачу двумя способами: логикой и методом координат.

    Я вначале применю метод координат, а потом расскажу тебе, как можно решить иначе.

    Совершенно ясно, что абсцисса точки ( displaystyle B) равна ( displaystyle 6). (она лежит на перпендикуляре, проведенной из точки ( displaystyle A) к оси абсцисс).

    Нам нужно найти ординату.

    Воспользуемся тем, что наша фигура – параллелограмм, это значит, что ( displaystyle CA=OB).

    Найдем длину отрезка ( displaystyle CA), используя формулу расстояния между двумя точками:

    Опускаем перпендикуляр, соединяющий точку ( B) с осью ( Ox).

    Точку пересечения обозначу буквой ( D).

    Длина отрезка ( OD) равна ( 6). (найди сам задачу, где мы обсуждали этот момент), тогда найдем длину отрезка ( BD) по теореме Пифагора:

    Длина отрезка – в точности совпадает с его ординатой.

    Другое решение (я просто приведу рисунок, который его иллюстрирует)

    • Провести ( CE);
    • Найти координаты точки ( E) и длину ( AE);
    • Доказать, что ( BD=AE).

    Еще одна задачка на длину отрезка:

    2 right)) яв­ля­ют­ся вер­ши­на­ми тре­уголь­ни­ка. Най­ди­те длину его сред­ней линии ( CD), па­рал­лель­ной ( OA).

    Ты помнишь, что такое средняя линия треугольника?

    Тогда для тебя эта задача элементарна. Если не помнишь, то я напомню: средняя линия треугольника – это линия, которая соединяет середины противоположных сторон.

    Она параллельна основанию и равна его половине.

    Основание – это отрезок ( OA).

    Его длину нам приходилось искать ранее, оно равно ( 10).

    Тогда длина средней линии вдвое меньше и равна ( 5).

    Комментарий: эту задачу можно решить и другим способом, к которому мы обратимся чуть позже.

    А пока – вот тебе несколько задачек, потренируйся на них, они совсем простые, но помогают «набивать руку», на использовании метода координат!

    6 right)) яв­ля­ют­ся вер­ши­на­ми тра­пе­ции. Най­ди­те длину ее сред­ней линии ( DE).

    6 right)) и ( A) яв­ля­ют­ся вер­ши­на­ми па­рал­ле­ло­грам­ма. Най­ди­те ор­ди­на­ту точки ( A).

    3. Най­ди­те длину от­рез­ка, со­еди­ня­ю­ще­го точки ( Aleft( 6 ;

    4. Най­ди­те пло­щадь за­кра­шен­ной фи­гу­ры на ко­ор­ди­нат­ной плос­ко­сти.

    5. Окруж­ность с цен­тром в на­ча­ле ко­ор­ди­нат про­хо­дит через точку ( displaystyle Pleft( 8;text< >6 right)). Най­ди­те ее ра­ди­ус.

    6. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около пря­мо­уголь­ни­ка ( displaystyle ABCD), вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты со­от­вет­ствен­но ( displaystyle left( -2;

    1. Известно, что средняя линия трапеции равна полусумме ее оснований.

    Основание ( displaystyle CB) равно ( displaystyle 6), а основание ( displaystyle OA-10).

    Тогда ( displaystyle ED=frac<2>=frac<16><2>=8)

    Ответ: ( displaystyle 8)

    2. Проще всего решить эту задачу так: заметить, что ( displaystyle overrightarrow=overrightarrow+overrightarrow) (правило параллелограмма).

    Вычислить координаты векторов ( displaystyle overrightarrow) и ( displaystyle overrightarrow) не представляет труда: ( displaystyle overrightarrowleft( 2,6 right),

    overrightarrowleft( 8,2 right)).

    При сложении векторов координаты складываются.

    Тогда ( displaystyle overrightarrow) имеет координаты ( displaystyle left( 10,8 right)).

    Эти же координаты имеет и точка ( displaystyle A), поскольку начало вектора ( displaystyle overrightarrow) – это точка с координатами ( displaystyle left( 0,0 right)).

    Нас интересует ордината. Она равна ( displaystyle 8).

    Ответ: ( displaystyle 8)

    3. Действуем сразу по формуле расстояния между двумя точками:

    Ответ: ( displaystyle 10)

    4. Посмотри на картинку и скажи, между какими двумя фигурами «зажата» заштрихованная область?

    Она зажата между двумя квадратами. Тогда площадь искомой фигуры равна площади большого квадрата минус площадь маленького.

    Сторона маленького квадрата – это отрезок, соединяющий точки ( displaystyle left( 0,2 right)) и ( displaystyle left( 2,0 right).) Его длина равна

    Тогда площадь маленького квадрата равна

    Точно так же поступаем и с большим квадратом: его сторона – это отрезок, соединяющий точки ( displaystyle left( 0,4 right)) и ( displaystyle left( 4,0 right).)

    Тогда площадь большого квадрата равна

    Площадь искомой фигуры найдем по формуле:

    Ответ: ( displaystyle 24)

    5. Если окружность имеет в качестве центра начало координат и проходит через точку ( displaystyle P), то ее радиус ( displaystyle R) будет в точности равен длине отрезка ( displaystyle OP) (сделай рисунок и ты поймешь, почему это очевидно).

    Найдем длину этого отрезка:

    Ответ: ( displaystyle 10)

    6. Известно, что радиус описанной около прямоугольника окружности равен половине его диагонали.

    Найдем длину любой из двух диагоналей (ведь в прямоугольнике они равны!)

    ( displaystyle R=frac<1><2>left| AC right|=5)

    Ответ: ( displaystyle 5)

    Ну что, ты со всем справился?

    Было не очень сложно разобраться, ведь так? Правило здесь одно – уметь сделать наглядную картинку и просто «считать» с нее все данные.

    Нам осталось совсем немного. Есть еще буквально два момента, которые бы мне хотелось обсудить:

    • как найти координаты середины отрезка и

    Координаты середины отрезка

    Давай попробуем решить вот такую нехитрую задачку.

    Пусть даны две точки ( displaystyle Aleft( <_<1>>,<_<2>> right)

    Найти координаты середины отрезка ( displaystyle AB). Решение этой задачки следующее: пусть точка ( displaystyle D) – искомая середина, тогда ( displaystyle D) имеет координаты:

    То есть: координаты середины отрезка = среднее арифметическое соответствующих координат концов отрезка.

    Это правило очень простое и как правило не вызывает затруднений у учащихся. Давай посмотрим, в каких задачках и как оно употребляется:

    1. Най­ди­те ор­ди­на­ту се­ре­ди­ны от­рез­ка, со­еди­ня­ю­ще­го точки ( displaystyle Aleft( 6,

    2. Точки ( displaystyle Oleft( 0;

    6 right)) яв­ля­ют­ся вер­ши­на­ми че­ты­рех­уголь­ни­ка. Най­ди­те ор­ди­на­ту точки ( displaystyle P) пе­ре­се­че­ния его диа­го­на­лей.

    3. Най­ди­те абс­цис­су цен­тра окруж­но­сти, опи­сан­ной около пря­мо­уголь­ни­ка ( displaystyle ABCD), вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты со­от­вет­ствен­но ( displaystyle left( -2;

    1. Первая задачка – просто классика. Действуем сразу по определению середины отрезка. Она имеет координаты ( displaystyle left( frac<6-2><2>,

    Ордината равна ( displaystyle 5).

    Ответ: ( displaystyle 5)

    2. Легко видеть, что данный четырехугольник является параллелограммом (даже ромбом!). Ты и сам можешь это доказать, вычислив длины сторон и сравнив их между собой.

    Что я знаю про параллелограмм?

    Его диагонали точкой пересечения делятся пополам! Ага! Значит точка пересечения диагоналей – это что?

    Это середина любой из диагоналей!

    Выберу, в частности диагональ ( displaystyle OA). Тогда точка ( displaystyle P) имеет координаты ( displaystyle left( frac<6+0><2>,frac<8+0> <2>right)=left( 3,4 right).)

    Ордината точки ( displaystyle P) равна ( displaystyle 4).

    Ответ: ( displaystyle 4)

    3. С чем совпадает центр описанной около прямоугольника окружности?

    Он совпадает с точкой пересечения его диагоналей. А что ты знаешь про диагонали прямоугольника?

    Они равны и точкой пересечения делятся пополам. Задача свелась к предыдущей.

    Возьму, например, диагональ ( displaystyle AC). Тогда если ( displaystyle P) – центр описанной окружности, то ( displaystyle P) – середина ( displaystyle AC).

    Ищу координаты: ( displaystyle Pleft( frac<-2+6><2>,frac<-2+4> <2>right)=Pleft( 2,1 right).) Абсцисса равна ( displaystyle 2).

    Ответ: ( displaystyle 2)

    Теперь потренируйся немного самостоятельно, я лишь приведу ответы к каждой задачи, чтобы ты мог себя проверить.

    1. Най­ди­те ра­ди­ус окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка, вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты ( displaystyle left( 8;

    2. Най­ди­те ор­ди­на­ту цен­тра окруж­но­сти, опи­сан­ной около тре­уголь­ни­ка, вер­ши­ны ко­то­ро­го имеют ко­ор­ди­на­ты ( displaystyle left( 8;

    3. Ка­ко­го ра­ди­у­са долж­на быть окруж­ность с цен­тром в точке ( displaystyle Pleft( 8;

    6 right),) чтобы она ка­са­лась оси абс­цисс?

    4. Най­ди­те ор­ди­на­ту точки пе­ре­се­че­ния оси ( displaystyle Oy) и от­рез­ка, со­еди­ня­ю­ще­го точки ( displaystyle Aleft( 6;text< >8 right)) и ( displaystyle Bleft( -6;text< >0 right).)

    • ( displaystyle 5);
    • ( displaystyle 3);
    • ( displaystyle 6);
    • ( displaystyle 4).

    Умножение векторов

    Все удалось? Очень на это надеюсь! Теперь – последний рывок.

    Сейчас будь особенно внимателен. Тот материал, который я сейчас буду объяснять, имеет непосредственное отношение не только к простым задачам на метод координат, но также встречается повсеместно и в задачах повышенной сложности.

    Какое из своих обещаний я еще не сдержал?

    Вспомни, какие операции над векторами я обещал ввести и какие в конечном счете ввел? Я точно ничего не забыл?

    Забыл! Забыл объяснить, что значит умножение векторов.

    Есть два способа умножить вектор на вектор. В зависимости от выбранного способа у нас будут получаться объекты разной природы:

    • Скалярное произведение (результат – число);
    • Векторное произведение (результат – вектор).

    Векторное произведение выполняется довольно хитро. Как его делать и для чего оно нужно, мы с тобой обсудим чуть позже. А пока мы остановимся на скалярном произведении.

    Есть аж два способа, позволяющих нам его вычислить:

    • Через координаты векторов;
    • Через длины векторов и угол между ними.

    Как ты догадался, результат должен быть один и тот же! Итак, давай вначале рассмотрим первый способ:

    Источник статьи: http://youclever.org/book/koordinaty-i-vektory-1/

    Векторы для чайников. Действия с векторами.
    Координаты вектора. Простейшие задачи с векторами

    Наконец-то у меня добрались руки до обширной и долгожданной темы аналитической геометрии. Сначала немного о данном разделе высшей математики…. Наверняка вам сейчас вспомнился курс школьной геометрии с многочисленными теоремами, их доказательствами, чертежами и т.д. Что скрывать, нелюбимый и часто малопонятный предмет для значительной доли учеников. Аналитическая геометрия, как ни странно, может показаться более интересной и доступной. Что означает прилагательное «аналитическая»? На ум сразу приходят два штампованных математических оборота: «графический метод решения» и «аналитический метод решения». Графический метод, понятно, связан с построением графиков, чертежей. Аналитический же метод предполагает решение задач преимущественно посредством алгебраических действий. В этой связи алгоритм решений практически всех задач аналитической геометрии прост и прозрачен, зачастую достаточно аккуратно применить нужные формулы – и ответ готов! Нет, конечно, совсем без чертежей тут не обойдется, к тому же для лучшего понимания материала я постараюсь приводить их сверх необходимости.

    Открываемый курс уроков по геометрии не претендует на теоретическую полноту, он ориентирован на решение практических задач. Я включу в свои лекции только то, что с моей точки зрения, является важным в практическом плане. Если вам необходима более полная справка по какому-либо подразделу, рекомендую следующую вполне доступную литературу:

    1) Вещь, с которой, без шуток, знакомо несколько поколений: Школьный учебник по геометрии, авторы – Л.С. Атанасян и Компания. Сия вешалка школьной раздевалки уже выдержала 20 (!) переизданий, что, конечно, не является пределом.

    2) Геометрия в 2 томах. Авторы Л.С. Атанасян, Базылев В.Т. Это литература для высшей школы, вам потребуется первый том. Из моего поля зрения могут выпадать редко встречающиеся задачи, и учебное пособие окажет неоценимую помощь.

    Из инструментальных средств предлагаю собственную разработку – программный комплекс по аналитической геометрии, который значительно упростит жизнь и сэкономит массу времени.

    Предполагается, что читатель знаком с базовыми геометрическими понятиями и фигурами: точка, прямая, плоскость, треугольник, параллелограмм, параллелепипед, куб и т.д. Желательно помнить некоторые теоремы, хотя бы теорему Пифагора, привет второгодникам)

    А сейчас мы последовательно рассмотрим: понятие вектора, действия с векторами, координаты вектора. Далее рекомендую прочитать важнейшую статью Скалярное произведение векторов, а также Линейная (не) зависимость векторов. Базис векторов и Векторное и смешанное произведение векторов. Не лишней будет и локальная задача – Деление отрезка в данном отношении. На основе вышеуказанной информации можно освоить уравнение прямой на плоскости с простейшими примерами решений, что позволит научиться решать задачи по геометрии. Также полезны следующие статьи: Уравнение плоскости в пространстве, Уравнения прямой в пространстве, Основные задачи на прямую и плоскость, другие разделы аналитической геометрии. Естественно, попутно будут рассматриваться типовые задания.

    Более того, по материалам сайта создана книга!

    . да, это свершилось! – освойте азы теории и научитесь решать в кратчайшие сроки! Спасибо за поддержку проекта.

    Понятие вектора. Свободный вектор

    Сначала повторим школьное определение вектора. Вектором называется направленный отрезок, для которого указано его начало и конец:

    В данном случае началом отрезка является точка , концом отрезка – точка . Сам вектор обозначен через . Направление имеет существенное значение, если переставить стрелку в другой конец отрезка, то получится вектор , и это уже совершенно другой вектор. Понятие вектора удобно отождествлять с движением физического тела: согласитесь, зайти в двери института или выйти из дверей института – это совершенно разные вещи.

    Отдельные точки плоскости, пространства удобно считать так называемым нулевым вектором . У такого вектора конец и начало совпадают.

    . Примечание: Здесь и далее можете считать, что векторы лежат в одной плоскости или можете считать, что они расположены в пространстве – суть излагаемого материала справедлива и для плоскости и для пространства.

    Обозначения: Многие сразу обратили внимание на палочку без стрелочки в обозначении и сказали, там же вверху еще стрелку ставят! Верно, можно записать со стрелкой: , но допустима и запись , которую я буду использовать в дальнейшем. Почему? Видимо, такая привычка сложилась из практических соображений, слишком разнокалиберными и мохнатыми получались мои стрелки в школе и ВУЗе. В учебной литературе иногда вообще не заморачиваются клинописью, а выделяют буквы жирным шрифтом: , подразумевая тем самым, что это вектор.

    То была стилистика, а сейчас о способах записи векторов:

    1) Векторы можно записать двумя большими латинскими буквами:
    и так далее. При этом первая буква обязательно обозначает точку-начало вектора, а вторая буква – точку-конец вектора.

    2) Векторы также записывают маленькими латинскими буквами:
    В частности, наш вектор можно для краткости переобозначить маленькой латинской буквой .

    Длиной или модулем ненулевого вектора называется длина отрезка . Длина нулевого вектора равна нулю. Логично.

    Длина вектора обозначается знаком модуля: ,

    Как находить длину вектора мы узнаем (или повторим, для кого как) чуть позже.

    То были элементарные сведения о векторе, знакомые всем школьникам. В аналитической же геометрии рассматривается так называемый свободный вектор.

    Если совсем просто – вектор можно отложить от любой точки:

    Такие векторы мы привыкли называть равными (определение равных векторов будет дано ниже), но чисто с математической точки зрения это ОДИН И ТОТ ЖЕ ВЕКТОР или свободный вектор. Почему свободный? Потому что в ходе решения задач вы можете «пристроить» тот или иной «школьный» вектор в ЛЮБУЮ, нужную вам точку плоскости или пространства. Это очень крутое свойство! Представьте направленный отрезок произвольной длины и направления – его можно «клонировать» бесконечное количество раз и в любой точке пространства, по сути, он существует ВЕЗДЕ. Есть такая студенческая присказка: Каждому лектору в ж**у по вектору. Ведь не просто остроумная рифма, всё почти корректно – направленный отрезок можно пристроить и туда. Но не спешите радоваться, чаще страдают сами студенты =)

    Итак, свободный вектор – это множество одинаковых направленных отрезков. Школьное определение вектора, данное в начале параграфа: «Вектором называется направленный отрезок…», подразумевает конкретный направленный отрезок, взятый из данного множества, который привязан к определённой точке плоскости или пространства.

    Следует отметить, что с точки зрения физики понятие свободного вектора в общем случае некорректно, и точка приложения имеет значение. Действительно, прямой удар одинаковой силы по носу или по лбу хватит развивать мой дурацкий пример влёчет разные последствия. Впрочем, несвободные векторы встречаются и в курсе вышмата (не ходите туда :)).

    Далее, если не оговаривается иное, речь пойдёт только о свободных векторах.

    Действия с векторами. Коллинеарность векторов

    В школьном курсе геометрии рассматривается ряд действий и правил с векторами: сложение по правилу треугольника, сложение по правилу параллелограмма, правило разности векторов, умножения вектора на число, скалярное произведение векторов и др. Для затравки повторим два правила, которые особенно актуальны для решения задач аналитической геометрии.

    Правило сложения векторов по правилу треугольников

    Рассмотрим два произвольных ненулевых вектора и :

    Требуется найти сумму данных векторов. В силу того, что все векторы считаются свободными, отложим вектор от конца вектора :

    Суммой векторов и является вектор . Для лучшего понимания правила в него целесообразно вложить физический смысл: пусть некоторое тело совершило путь по вектору , а затем по вектору . Тогда сумма векторов представляет собой вектор результирующего перемещения с началом в точке отправления и концом в точке прибытия. Аналогичное правило формулируется для суммы любого количества векторов. Как говорится, тело может пройти свой путь сильно поддатым по зигзагу, а может и на автопилоте – по результирующему вектору суммы.

    Кстати, если вектор отложить от начала вектора , то получится эквивалентное правило параллелограмма сложения векторов.

    Умножение вектора на число

    Сначала о коллинеарности векторов. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Грубо говоря, речь идёт о параллельных векторах. Но применительно к ним всегда используют прилагательное «коллинеарные».

    Представьте два коллинеарных вектора. Если стрелки данных векторов направлены в одинаковом направлении, то такие векторы называются сонаправленными. Если стрелки смотрят в разные стороны, то векторы будут противоположно направлены.

    Обозначения: коллинеарность векторов записывают привычным значком параллельности: , при этом возможна детализация: (векторы сонаправлены) или (векторы направлены противоположно).

    Произведением ненулевого вектора на число является такой вектор , длина которого равна , причём векторы и сонаправлены при и противоположно направлены при .

    Правило умножения вектора на число легче понять с помощью рисунка:

    Разбираемся более детально:

    1) Направление. Если множитель отрицательный, то вектор меняет направление на противоположное.

    2) Длина. Если множитель заключен в пределах или , то длина вектора уменьшается. Так, длина вектора в два раза меньше длины вектора . Если множитель по модулю больше единицы, то длина вектора увеличивается в раз.

    3) Обратите внимание, что все векторы коллинеарны, при этом один вектор выражен через другой, например, . Обратное тоже справедливо: если один вектор можно выразить через другой, то такие векторы обязательно коллинеарны. Таким образом: если мы умножаем вектор на число, то получится коллинеарный (по отношению к исходному) вектор.

    4) Векторы сонаправлены. Векторы и также сонаправлены. Любой вектор первой группы противоположно направлен по отношению к любому вектору второй группы.

    Какие векторы являются равными?

    Два вектора равны, если они сонаправлены и имеют одинаковую длину. Заметьте, что сонаправленность подразумевает коллинеарность векторов. Определение будет неточным (избыточным), если сказать: «Два вектора равны, если они коллинеарны, сонаправлены и имеют одинаковую длину».

    С точки зрения понятия свободного вектора, равные векторы – это один и тот же вектор, о чём уже шла речь в предыдущем параграфе.

    Координаты вектора на плоскости и в пространстве

    Первым пунктом рассмотрим векторы на плоскости. Изобразим декартову прямоугольную систему координат и от начала координат отложим единичные векторы и :

    Векторы и ортогональны. Ортогональны = Перпендикулярны. Рекомендую потихоньку привыкать к терминам: вместо параллельности и перпендикулярности используем соответственно слова коллинеарность и ортогональность.

    Обозначение: ортогональность векторов записывают привычным значком перпендикулярности, например: .

    Рассматриваемые векторы называют координатными векторами или ортами. Данные векторы образуют базис на плоскости. Что такое базис, думаю, интуитивно многим понятно, более подробную информацию можно найти в статье Линейная (не) зависимость векторов. Базис векторов. Простыми словами, базис и начало координат задают всю систему – это своеобразный фундамент, на котором кипит полная и насыщенная геометрическая жизнь.

    Иногда построенный базис называют ортонормированным базисом плоскости: «орто» – потому что координатные векторы ортогональны, прилагательное «нормированный» означает единичный, т.е. длины векторов базиса равны единице.

    Обозначение: базис обычно записывают в круглых скобках, внутри которых в строгой последовательности перечисляются базисные векторы, например: . Координатные векторы нельзя переставлять местами.

    Любой вектор плоскости единственным образом выражается в виде:
    , где числа, которые называются координатами вектора в данном базисе. А само выражение называется разложением вектора по базису .

    ! ВСЕМ настоятельно рекомендую прочитать ВСЁ!

    Начнем с первой буквы алфавита: . По чертежу хорошо видно, что при разложении вектора по базису используются только что рассмотренные:
    1) правило умножения вектора на число: и ;
    2) сложение векторов по правилу треугольника: .

    А теперь мысленно отложите вектор от любой другой точки плоскости. Совершенно очевидно, что его разложение будет «неотступно следовать за ним». Вот она, свобода вектора – вектор «всё носит при себе». Это свойство, разумеется, справедливо для любого вектора. Забавно, что сами базисные (свободные) векторы не обязательно откладывать от начала координат, один можно нарисовать, например, слева внизу, а другой – справа вверху, и от этого ничего не изменится! Правда, делать так не нужно, поскольку преподаватель тоже проявит оригинальность и нарисует вам «зачтено» в неожиданном месте.

    Векторы , иллюстрируют в точности правило умножения вектора на число, вектор сонаправлен с базисным вектором , вектор направлен противоположно по отношению к базисному вектору . У данных векторов одна из координат равна нулю, дотошно можно записать так:


    А базисные векторы, к слову, так: (по сути, они выражаются сами через себя).

    И, наконец: , . Кстати, что такое вычитание векторов, и почему я не рассказал о правиле вычитания? Где-то в линейной алгебре, уже не помню где, я отмечал, что вычитание – это частный случай сложения. Так, разложения векторов «дэ» и «е» преспокойно записываются в виде суммы: , . Проследите по чертежу, как чётко в этих ситуациях работает старое доброе сложение векторов по правилу треугольника.

    Рассмотренное разложение вида иногда называют разложением вектора в системе орт (т.е. в системе единичных векторов). Но это не единственный способ записи вектора, распространён следующий вариант:

    Или со знаком равенства:

    Сами базисные векторы записываются так: и

    То есть, в круглых скобках указываются координаты вектора. В практических задачах используются все три варианта записи.

    Сомневался, говорить ли, но всё-таки скажу: координаты векторов переставлять нельзя. Строго на первом месте записываем координату, которая соответствует единичному вектору , строго на втором месте записываем координату, которая соответствует единичному вектору . Действительно, и – это ведь два разных вектора.

    С координатами на плоскости разобрались. Теперь рассмотрим векторы в трехмерном пространстве, здесь практически всё так же! Только добавится ещё одна координата. Трехмерные чертежи выполнять тяжко, поэтому ограничусь одним вектором, который для простоты отложу от начала координат:

    Перед вами ортонормированный базис трехмерного пространства и прямоугольная система координат, единичные векторы данного базиса попарно ортогональны: и . Ось наклонена под углом 45 градусов только для того, чтобы складывалось визуальное впечатление пространства. О том, как правильно выполнять плоские и трехмерные чертежи на клетчатой бумаге, читайте в самом начале методички Графики и свойства функций.

    Любой вектор трехмерного пространства можно единственным способом разложить по ортонормированному базису :
    , где – координаты вектора (числа) в данном базисе.

    Пример с картинки: . Давайте посмотрим, как здесь работают правила действий с векторами. Во-первых, умножение вектора на число: (красная стрелка), (зеленая стрелка) и (малиновая стрелка). Во-вторых, перед вами пример сложения нескольких, в данном случае трёх, векторов: . Вектор суммы начинается в исходной точке отправления (начало вектора ) и утыкается в итоговую точку прибытия (конец вектора ).

    Все векторы трехмерного пространства, естественно, тоже свободны, попробуйте мысленно отложить вектор от любой другой точки, и вы поймёте, что его разложение «останется при нём».

    Аналогично плоскому случаю, помимо записи широко используются версии со скобками: либо .

    Если в разложении отсутствует один (или два) координатных вектора, то вместо них ставятся нули. Примеры:
    вектор (дотошно ) – запишем ;
    вектор (дотошно ) – запишем ;
    вектор (дотошно ) – запишем .

    Базисные векторы записываются следующим образом:

    Вот, пожалуй, и все минимальные теоретические знания, необходимые для решения задач аналитической геометрии. Возможно многовато терминов и определений, поэтому чайникам рекомендую перечитать и осмыслить данную информацию ещё раз. Да и любому читателю будет полезно время от времени обращаться к базовому уроку для лучшего усвоения материала. Коллинеарность, ортогональность, ортонормированный базис, разложение вектора – эти и другие понятия будут часто использоваться в дальнейшем. Отмечу, что материалов сайта недостаточно для сдачи теоретического зачета, коллоквиума по геометрии, так как все теоремы (к тому же без доказательств) я аккуратно шифрую – в ущерб научному стилю изложения, но плюсом к вашему пониманию предмета. Для получения обстоятельной теоретической справки прошу следовать на поклон к профессору Атанасяну.

    А мы переходим к практической части:

    Простейшие задачи аналитической геометрии.
    Действия с векторами в координатах

    Задания, которые будут рассмотрены, крайне желательно научиться решать на полном автомате, а формулы запомнить наизусть, даже специально не запоминать, сами запомнятся =) Это весьма важно, поскольку на простейших элементарных примерах базируются другие задачи аналитической геометрии, и будет досадно тратить дополнительное время на поедание пешек. Не нужно застёгивать верхние пуговицы на рубашке, многие вещи знакомы вам со школы.

    Изложение материала пойдет параллельным курсом – и для плоскости, и для пространства. По той причине, что все формулы… сами увидите.

    Как найти вектор по двум точкам?

    Если даны две точки плоскости и , то вектор имеет следующие координаты:

    Если даны две точки пространства и , то вектор имеет следующие координаты:

    То есть, из координат конца вектора нужно вычесть соответствующие координаты начала вектора.

    Задание: Для тех же точек запишите формулы нахождения координат вектора . Формулы в конце урока.

    Даны две точки плоскости и . Найти координаты вектора

    Решение: по соответствующей формуле:

    Как вариант, можно было использовать следующую запись:

    Эстеты решат и так:

    Лично я привык к первой версии записи.

    Ответ:

    По условию не требовалось строить чертежа (что характерно для задач аналитической геометрии), но в целях пояснения некоторых моментов чайникам, не поленюсь:

    Обязательно нужно понимать различие между координатами точек и координатами векторов:

    Координаты точек – это обычные координаты в прямоугольной системе координат. Откладывать точки на координатной плоскости, думаю, все умеют ещё с 5-6 класса. Каждая точка обладает строгим местом на плоскости, и перемещать их куда-либо нельзя.

    Координаты же вектора – это его разложение по базису , в данном случае . Любой вектор является свободным, поэтому при желании или необходимости мы легко можем отложить его от какой-нибудь другой точки плоскости (во избежание путаницы переобозначив, например, через ). Интересно, что для векторов можно вообще не строить оси, прямоугольную систему координат, нужен лишь базис, в данном случае ортонормированный базис плоскости .

    Записи координат точек и координат векторов вроде бы схожи: , а смысл координат абсолютно разный, и вам следует хорошо понимать эту разницу. Данное отличие, разумеется, справедливо и для пространства.

    Дамы и господа, набиваем руку:

    а) Даны точки и . Найти векторы и .
    б) Даны точки и . Найти векторы и .
    в) Даны точки и . Найти векторы и .
    г) Даны точки . Найти векторы .

    Пожалуй, достаточно. Это примеры для самостоятельного решения, постарайтесь ими не пренебрегать, окупится ;-). Чертежи делать не нужно. Решения и ответы в конце урока.

    Что важно при решении задач аналитической геометрии? Важно быть ПРЕДЕЛЬНО ВНИМАТЕЛЬНЫМ, чтобы не допустить мастерскую ошибку «два плюс два равно нулю». Сразу извиняюсь, если где ошибся =)

    Как найти длину отрезка?

    Длина, как уже отмечалось, обозначается знаком модуля.

    Если даны две точки плоскости и , то длину отрезка можно вычислить по формуле

    Если даны две точки пространства и , то длину отрезка можно вычислить по формуле

    Примечание: Формулы останутся корректными, если переставить местами соответствующие координаты: и , но более стандартен первый вариант

    Даны точки и . Найти длину отрезка .

    Решение: по соответствующей формуле:

    Ответ:

    Для наглядности выполню чертёж

    Отрезок это не вектор, и перемещать его куда-либо, конечно, нельзя. Кроме того, если вы выполните чертеж в масштабе: 1 ед. = 1 см (две тетрадные клетки), то полученный ответ можно проверить обычной линейкой, непосредственно измерив длину отрезка.

    Да, решение короткое, но в нём есть ещё пара важных моментов, которые хотелось бы пояснить:

    Во-первых, в ответе ставим размерность: «единицы». В условии не сказано, ЧТО это, миллиметры, сантиметры, метры или километры. Поэтому математически грамотным решением будет общая формулировка: «единицы» – сокращенно «ед.».

    Во-вторых, повторим школьный материал, который полезен не только для рассмотренной задачи:

    Обратите внимание на важный технический приёмвынесение множителя из-под корня. В результате вычислений у нас получился результат и хороший математический стиль предполагает вынесение множителя из-под корня (если это возможно). Подробнее процесс выглядит так: . Конечно, оставить ответ в виде не будет ошибкой – но недочетом-то уж точно и весомым аргументом для придирки со стороны преподавателя.

    Вот другие распространенные случаи:

    Нередко под корнем получается достаточно большое число, например . Как быть в таких случаях? На калькуляторе проверяем, делится ли число на 4: . Да, разделилось нацело, таким образом: . А может быть, число ещё раз удастся разделить на 4? . Таким образом: . У числа последняя цифра нечетная, поэтому разделить в третий раз на 4 явно не удастся. Пробуем поделить на девять: . В результате:
    Готово.

    Вывод: если под корнем получается неизвлекаемое нацело число, то пытаемся вынести множитель из-под корня – на калькуляторе проверяем, делится ли число на: 4, 9, 16, 25, 36, 49 и т.д.

    В ходе решения различных задач корни встречаются часто, всегда пытайтесь извлекать множители из-под корня во избежание более низкой оценки да ненужных заморочек с доработкой ваших решений по замечанию преподавателя.

    Давайте заодно повторим возведение корней в квадрат и другие степени:

    Правила действий со степенями в общем виде можно найти в школьном учебнике по алгебре, но, думаю, из приведённых примеров всё или почти всё уже ясно.

    Задание для самостоятельного решения с отрезком в пространстве:

    Даны точки и . Найти длину отрезка .

    Решение и ответ в конце урока.

    Как найти длину вектора?

    Если дан вектор плоскости , то его длина вычисляется по формуле .

    Если дан вектор пространства , то его длина вычисляется по формуле .

    Данные формулы (как и формулы длины отрезка) легко выводятся с помощью небезызвестной теоремы Пифагора.

    Даны точки и . Найти длину вектора .

    Я взял те же точки, что и в Примере 3.

    Решение: Сначала найдём вектор :

    По формуле вычислим длину вектора:

    Ответ:

    Не забываем указывать размерность – «единицы»! Всегда ли, кстати, нужно рассчитывать приближенное значение (в данном примере 8,94), если этого не требуется в условии? С моей точки зрения, лишним не будет, отсутствие приближенного значения тянет на придирку. Округление целесообразно проводить до 2-3 знаков после запятой.

    Выполним чертеж к задаче:

    В чём принципиальное отличие от Примера 3? Отличие состоит в том, что здесь речь идёт о векторе, а не об отрезке. Вектор можно переместить в любую точку плоскости, при этом его лучше переобозначить, например, через .

    А в чём сходство Примера 3 и Примера 5? Геометрически очевидно, что длина отрезка равна длине вектора . Так же очевидно, что длина вектора будет такой же. По итогу:

    Задачу 3 можно было решить и вторым способом, повторю условие: Даны точки и . Найти длину отрезка .

    Вместо применения формулы , поступаем так:
    1) Находим вектор .
    2) А теперь ссылаемся на то, что длина отрезка равна длине вектора :

    Этот способ широко практикуется в ходе решений задач аналитической геометрии.

    Вышесказанное справедливо и для пространственного случая

    а) Даны точки и . Найти длину вектора .
    б) Даны векторы , , и . Найти их длины.

    Решения и ответы в конце урока.

    Действия с векторами в координатах

    В первой части урока мы рассматривали правила сложения векторов и умножения вектора на число. Но рассматривали их с принципиально-графической точки зрения. Посмотрим, как данные правила работают аналитически – когда заданы координаты векторов:

    1) Правило сложения векторов. Рассмотрим два вектора плоскости и . Для того, чтобы сложить векторы, нужно сложить их соответствующие координаты: . Как просто. На всякий случай запишу частный случай – формулу разности векторов: . Аналогичное правило справедливо для суммы любого количества векторов, добавим например, вектор и найдём сумму трёх векторов:

    Если речь идёт о векторах в пространстве, то всё точно так же, только добавится дополнительная координата. Если даны векторы , то их суммой является вектор .

    2) Правило умножения вектора на число. Ещё проще! Для того чтобы вектор умножить на число , нужно каждую координату данного вектора умножить на число :
    .

    Для пространственного вектора правило такое же:

    Приведённые факты строго доказываются в курсе аналитической геометрии.

    Примечание: Данные правила справедливы не только для ортонормированных базисов , но и для произвольного аффинного базиса плоскости или пространства. Более подробно о базисах читайте в статье Линейная (не) зависимость векторов. Базис векторов.

    Даны векторы и . Найти и

    Решение чисто аналитическое:

    Ответ:

    Чертеж в подобных задачах строить не надо, тем не менее, геометрическая демонстрация будет весьма полезной. Если считать, что векторы заданы в ортонормированном базисе , то графическое решение задачи будет таким:

    Коль скоро речь идет только о векторах в ортонормированном базисе, то оси рисовать не обязательно. Достаточно начертить базисные векторы, причём, где угодно. Ну, и координатную сетку для удобства. Строго говоря, ранее я допустил небольшой огрех – в некоторых чертежах урока тоже можно было не чертить декартову прямоугольную систему координат. Векторам она не нужна, им нужен базис. Впрочем, лучше всегда рисуйте, а то напугаете всех своими знаниями =)

    Как видите, графический способ решения привёл к тем же результатам, что и аналитический способ решения. Ещё раз заметьте свободу векторов: любую из трёх «конструкций» можно переместить в любую точку плоскости.

    Для векторов в пространстве можно провести аналогичные выкладки. Но там чертежи строить значительно сложнее, поэтому ограничусь аналитическим решением (на практике, собственно, бОльшего и не надо):

    Даны векторы и . Найти и

    Решение: Для действий с векторами справедлив обычный алгебраический приоритет: сначала умножаем, потом складываем:

    Ответ:

    И в заключение занятный пример с векторами на плоскости:

    Даны векторы . Найти и

    Это задача для самостоятельного решения.

    Какой вывод? Многие задачи аналитической геометрии прозрачны и просты, главное, не допустить вычислительных ошибок. Следующие рекомендуемые к изучению уроки:

    Это, так скажем, вектор-минимум студента =)

    Любите векторы, и векторы полюбят вас!

    Задание: ,

    Пример 2: Решение:
    а)

    б)

    в)

    г)

    Пример 4: Решение:
    По соответствующей формуле: и

    Ответ:

    Пример 6: и
    а) Решение: найдём вектор :

    Вычислим длину вектора:

    Ответ:

    б) Решение:
    Вычислим длины векторов:

    Пример 9: Решение:

    Примечание: Перед выполнением действий можно предварительно раскрыть скобки:

    Ответ:

    (Переход на главную страницу)

    cкидкa 17% на первый зaкaз, при оформлении введите прoмoкoд: 5530-xr4ys

    Источник статьи: http://mathprofi.net/vektory_dlya_chainikov.html

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *