Меню

Как найти длину разности векторов в прямоугольнике



Задание по геометрии — вектора.

Эта страница посвящена группе задач по геометрии, связанной с векторами, и является продолжением рассмотрения серии геометрических заданий, характерных для ЕГЭ и ОГЭ по математике.
Если вы не занимались другими типами этого задания, перейдите по ссылкам в конце страницы.

Задачи на вектора.

Длина отрезка называется модулем вектора. Два вектора равны, если они имеют равные модули и одинаково направлены.
Вектора обозначают либо строчными латинскими буквами a, b, c . , либо указанием концов отрезка AB, CD, MN. Чтобы отличить обозначение вектора от обозначения просто отрезка, эти символы сверху дополняются черточками или стрелочками. В печатном тексте строчные латинские буквы часто выделяют только полужирным шрифтом.

Если вектор обозначен двумя буквами (концами отрезка), то на первом месте всегда стоит начало вектора.

Задать вектор можно разными способами:
1. Графически — изобразить на координатной сетке.
2. Задать начальную и конечную точки и их координаты.
3. Задать длину отрезка и направление. Направление определяют углы с осями координат (направляющие косинусы).
4. Задать координаты вектора.

Уточним понятие координаты вектора.

На рисунке вектор AB имеет координаты (9;5). Обратите внимание, что эти числа фактически задают катеты прямоугольного треугольника, гипотенузой которого является отрезок АВ. Длина этих катетов не изменится, если мы переместим параллельным переносом отрезок, а с ним и весь треугольник, в другое место. Координаты вектора не зависят от его положения на плоскости, а только от длины отрезка и направления. Если направление вектора не совпадает с направлением оси координат, то соответствующая координата вектора будет равна длине катета со знаком «минус».

Вектора можно складывать, вычитать, умножать на число. Для векторов также определены специальные виды умножения — скалярное произведение, результатом которого является число, и — векторное произведение, результатом которого является вектор. (Векторное произведение не входит в обязательную школьную программу по математике, но частично встречается на уроках физики, когда изучают законы индукции магнитного поля.) Операции над векторами можно производить либо координатным методом, либо графическим (правило параллелограмма, правило треугольника. ). Повторите эти правила по учебнику или справочнику и выберите себе «любимое». Я привожу решение тем методом, который короче для конкретной задачи.

Для следующей группы задач чертёж в условии, вообще говоря, не обязателен. Если решать задачи координатным методом, то и в решении можно обойтись без чертежа, тем более, не нужна сетка. Однако лучше чертежи делать всегда, чтобы избежать нечаянных ошибок. А сетка помогает зрительно контролировать своё решение. Конечно, в том случае, если масштаб данных позволяет.

Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину вектора AC .

Длина вектора AC — равна длине отрезка AC, который является гипотенузой прямоугольного треугольника ABC с известными катетами.
AC 2 = AB 2 + BC 2 = 8 2 + 6 2 = 64 + 36 = 100; AC = 10.

Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину суммы векторов AB и AD .

По правилу параллелограмма: сумма векторов совпадает с диагональю параллелограмма, проходящей через точку, в которой совмещены начала векторов-слагаемых; начало вектора-суммы находится в точке начала обоих векторов. На рисунке это вектор AC — . Его длину мы находили в предыдущей задаче:
AC 2 = AB 2 + BC 2 = 8 2 + 6 2 = 64 + 36 = 100; AC = 10.

Две стороны прямоугольника ABCD равны 6 и 8.
Найдите длину разности векторов AB и AD .

По правилу параллелограмма: разность векторов совпадает с другой диагональю параллелограмма (соединяющей концы векторов-слагаемых, если их начала совмещены в одной точке); вектор разности направлен от вычитаемого к уменьшаемому. На рисунке это вектор DB — , направлен от D к B, так как я нахожу разность AB — − AD — .
DB 2 = AB 2 + AD 2 = 8 2 + 6 2 = 64 + 36 = 100; DB = 10.

Замечание: Ответы совпали, потому что дан один и тот же прямоугольник, а диагонали в прямоугольнике, как известно, равны.

Две стороны прямоугольника ABCD равны 6 и 8.
Найдите скалярное произведение векторов AB и AD .

Скалярное произведение двух векторов a и b находится по любой из двух формул.
1) Через координаты по формуле (a,b) = a1·b1 + a2·b2
2) Через длины векторов и угол между ними по формуле (a,b) = |a|·|b|·cosα

Способ I.
Координаты вектора AB — равны (8;0), вектора AD — равны (0;6).
Значит ( AB — , AD — ) = 8·0 + 0·6 = 0.
Способ II.
| AB — | = AB = 8, | AD — | = AD = 6, cosα = cos∠DAB = cos90° = 0.
Значит ( AB — , AD — ) = | AB — |·| AD — |·cos∠DAB = 8·6·0 = 0.

Замечание: Есть несколько способов обозначения скалярного произведения. Можно со скобками (a,b) или без них a·b _ _ , как обычное умножение.

Две стороны прямоугольника ABCD равны 6 и 8.
Диагонали пересекаются в точке O. Найдите длину суммы векторов AO и BO .

Вспомним, что диагонали прямоугольника пересекаются в его центре и в точке пересечения делятся пополам.

Способ I.
Координаты вектора AO — равны (4;3), обе положительны, потому что вектор направлен вверх, как ось Oy и вправо, как ось Ox. Координаты вектора BO — равны (-4;3), вектор направлен вверх, как ось Oy, но влево, противоположно оси Ox. Чтобы найти сумму векторов, воспользуемся тем, что при сложении векторов их соответствующие координаты складываются. Пусть вектор s(s1;s2) — сумма, тогда s1 = 4 + (- 4) = 4 — 4 = 0; s2 = 3 + 3 = 6. Квадрат длины вектора |s| 2 = s1 2 + s2 2 = 0 2 + 6 2 = 36;
длина вектора |s| = 6.

Способ II.
Чтобы решить задачу графически, надо применить к одному или к обоим векторам параллельный перенос. Для применения правила параллелограмма надо сместить их так, чтобы обе начальные точки совпали. Для применения правила треугольника надо начало одного из векторов-слагаемых совместить с концом другого. Здесь сместили вектор BO — вдоль линии ВD. На рисунке показан результат графического сложения — это вектор AD — . Как видно непосредственно по рисунку, его длина равна 6.

Две стороны прямоугольника ABCD равны 6 и 8.
Диагонали пересекаются в точке O. Найдите длину разности векторов AO и BO .

Способ I.
Координаты вектора AO — равны (4;3), вектора BO — равны (-4;3). Чтобы найти разность векторов, нужно найти разность их соответствующих координат. Пусть вектор d(d1;d2) — разность, тогда d1 = 4 — (- 4) = 4 + 4 = 8; d2 = 3 — 3 = 0. Квадрат длины вектора |d| 2 = d1 2 + d2 2 = 8 2 + 0 2 = 64; длина вектора |d| = 8.

Способ II.
Чтобы решить задачу графически, совмещаем начала векторов параллельным переносом обоих векторов вдоль диагоналей прямоугольника. На рисунке показан результат графического вычитания — это вектор DС — . Как видно непосредственно по рисунку, его длина равна 8.

Продолжить и повторить решение типовых задач ЕГЭ по математике на темы:

Перейдите по стрелке, чтобы найти ссылки на другие задачи ЕГЭ по математике.

Источник статьи: http://mathematichka.ru/ege/problems/problem_B3P2.html

Вычитание векторов. Как найти разность векторов

Для того, чтобы уяснить, что собой представляет разность векторов, введём понятие откладывания вектора от определённой точки и понятие суммы векторов.

Если некоторая точка A является началом вектора a, то говорят, что он является отложенным от точки A.

Теорема. От каждой точки можно отложить только один вектор, имеющий заданный модуль и направление. Докажем эту теорему.

Доказательство:

В случае, когда вектор нулевой, то теорема очевидна. Нулевые вектора в одной и той же точки совпадают между собой, т. е. являются одним и тем же вектором.

Сделаем построение. Точкой A обозначим начало вектора a, а точкой B его конец. Пусть у нас имеется некоторая точка K. Проведём через неё прямую b, которая параллельна вектору a. Отложим на данной прямой равные по своей абсолютной величине вектору a отрезки KL и KM. Из векторов, образованных этими отрезками искомым можно назвать только сонаправленный с a.

Единственность нашего вектора следует из того, что мы построили и видим.

Суммой векторов a и b называется вектор с тем же началом, что вектор a и концом, как у вектора b. При этом вектор b должен начинаться в той же самой точке, в которой заканчивается вектор a.

Равные векторы, начинающиеся в разных точках, нередко обозначают одной и той же буквой. Иногда про подобные векторы говорят, как об одном и том же векторе, отложенном из разных мест.

Разность векторов

Разностью векторов a и b называется сумма вектора a c вектором, который противоположно направлен к вектору b.

По-другому это определение можно сформулировать следующим образом: разностью двух векторов a и b называется вектор c, который при сложении с вычитаемым b образует уменьшаемое, т. е. вектор a.

Формулами это записывается так:

b + c = a

ab = c

Как найти разность векторов аналитическим способом

В двухмерном пространстве векторов a <x1, y1> и b 2, y₂> разность векторов можно вычислить, как показано ниже:

c 3, y3> = 2, y1 — y₂>.

Вычитание векторов в 3-мерном пространстве выглядит следующим образом:

Как найти разность векторов графическим способом

Нужно воспользоваться правилом треугольника. Последовательность действий следующая:

  1. Постройте по координатам векторы, для которых требуется найти разность;
  2. Совместите концы построенных векторов. Для этого нужно построить два равных заданным направленных отрезка, концы у которых будут в одной и той же точке;
  3. Соедините начала построенных отрезков и укажите их направление. Вектор c, называемый разностью векторов, будет иметь своё начало в той же точке, где начинается вектор, именуемый уменьшаемым и заканчивается в точке начала вычитаемого. Смотрите рисунок ниже.

Есть ещё один способ графического нахождения разности векторов. Он предусматривает следующий порядок действий:

  1. Постройте исходные направленные отрезки;
  2. Отразите вычитаемый отрезок. Для этого постройте противоположно направленный и равный ему отрезок и затем совместите начало этого отрезка с уменьшаемым;
  3. Постройте сумму, т. е. соедините начало первого отрезка и конец второго.

Нет времени решать самому?

Примеры вычисления разности векторов

Вычислить вектор c, который представляет собой разность вектора a = <1;
2> и вектора b = <4; 8>.

Действуем по выше указанному правилу

ab = <1 — 4; 2 — 8>=

Вычислить вектор c, который является разностью векторов a = <1; 2; 5>и
b = <4; 8; 1>.

Почти всё делается, как в уже рассмотренном примере, только добавляется третья координата.

ab = <1 — 4; 2 — 8; 5 — 1>=

Требуется построить разности: pn, m
n,mnp и найти ту из них, которая
имеет наименьший модуль.

Для изображения p — n проще всего воспользоваться правилом треугольника. Параллельным переносом
отрезки
следует соединить таким образом, чтобы совпали их конечные точки. Далее нужно соединить начальные точки и
определить направление. В нашем случае вектор разности берёт своё начало там же, где и вычитаемый n.

Для изображения m — n правильнее будет воспользоваться вторым графическим способом нахождения разности
векторов. Сначала построим вектор противоположный n и найдём его суммы с вектором m.

Для нахождения разности m — n — p разобьём это выражение на два действия. Возможны следующие варианты:

  • m — (n + p). Сначала нужно построить сумму,
    затем уже вычесть её из m;
  • (mn) — p. Сначала находим m — n,
    осле этого от полученной разности отнимаем p;
  • (mp) — n. Сначала определяем m — p, затем от
    полученного результата отнимаем n.

Из вычислений выше нам известна разность m — n. Для получения решения нам нужно вычесть из неё
p.
Используя определение 3 построим разность векторов на рисунке. На нём изображён окончательный результат
и промежуточный.

Теперь нужно определить наименьший модуль. В нашем случае для этого можно лишь визуально оценить длины p — n,
m — n и m — n — p. Из построения сразу видно, что наименьшим модулем обладает вектор разности m — n —
p
.

Источник статьи: http://www.napishem.ru/spravochnik/matematika/vektory/vychitanie-vektorov-kak-najti-raznost-vektorov.html

Определение разности двух векторов

В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых — это численное значение? В том, что они обладают направлением.
[block >

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) — это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c, начало которого совпадает с началом первого, а конец — с концом второго при условии, что b начинается в той же точке, в которой заканчивается a.
  7. Разностью векторов a и b называют сумму a и (b), где (b) — противоположно направленный к вектору b. Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c, который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a <a₁; a₂> и b <b₁; b₂> расчёты будут иметь следующий вид: c <c₁; c₂> = <a₁ — b₁; a₂ — b₂>.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a <a₁; a₂; a₃> и b <b₁; b₂; b₃> координаты разности будут также получены попарным вычитанием: c <c₁; c₂; c₃> = <a₁ — b₁; a₂ — b₂; a₃ — b₃>.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

[block > Результат операции вычитания показан на рисунке ниже.

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1. На плоскости заданы 4 точки: A (1; —3), B (0; 4), C (5; 8), D (—3; 2). Определить координаты вектора q = AB — CD, а также рассчитать его длину.

Решение. Вначале следует найти координаты AB и CD. Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; —3), а концом — B (0; 4). Рассчитаем координаты направленного отрезка:

Аналогичный расчёт выполняется для CD:

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = ab координаты имеют вид <c₁; c₂> = <a₁ — b₁; a₂ — b₂>. Для конкретного случая можно записать:

Чтобы найти длину q, воспользуемся формулой | q | = √(q₁² + q₂²) = √((— 9)² + (— 1)²) = √(81 + 1) = √82 ≈ 9,06.
[block > Задача 2. На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p — n; m — n; m — n — p. Выяснить, какая из них обладает наименьшим модулем.

Решение. В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p — n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m — n. Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:


[block > Часть 3. Для того чтобы найти разность m — n — p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m — (n + p): в этом случае вначале строится сумма n + p, которая затем вычитается из m;
  • (m — n) — p: здесь сначала нужно найти m — n, а затем отнять от этой разности p;
  • (m — p) — n: первым действием определяется m — p, после чего из полученного результата нужно вычесть n.

Так как в предыдущей части задачи мы уже нашли разность m — n, нам остаётся лишь вычесть из неё p. Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным — окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p — n, m — n и m — n — p. Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m — n — p.
[block > [block >

Источник статьи: http://obrazovanie.guru/nauka/matematika/opredelenie-raznosti-dvuh-vektorov.html

Сложение векторов: длина суммы векторов и теорема косинусов

Определения скалярного произведения векторов через угол между ними

Сложение векторов по правилу треугольника (суммой векторов и называется вектор , начало которого совпадает с началом вектора , а конец — с концом вектора , при условии, что начало вектора приложено к концу вектора ) даёт возможность упрощать выражение перед вычислением произведений векторов.

Сложение векторов, заданных координатами (при сложении одноимённые координаты складываются) даёт возможность узнать, как расположен относительно начала координат вектор, являющийся суммой слагаемых векторов. Подробно эти две операции разбирались на уроке «Векторы и операции над векторами».

Теперь же нам предстоит узнать, как найти длину вектора, являющегося результатом сложения векторов. Для этого потребуется использовать теорему косинусов. Такую задачу приходится решать, например, когда дорога из пункта A в пункт С — не прямая, а отклоняется от прямой, чтобы пройти ещё через какой-то пункт B, а нужно узнать длину предполагаемой прямой дороги. Кстати, геодезия — одна из тех сфер деятельности, где тригонометрические функции применяются во всех их полноте.

При сложении векторов для нахождения длины суммы векторов используется теорема косинусов. Пусть и — векторы, — угол между ними, а — сумма векторов как результат сложения векторов по правилу треугольника. Тогда верно следующее соотношение:

где — угол, смежный с углом . У смежных углов одна сторона общая, а другие стороны лежат на одной прямой (см. рисунок выше).

Поэтому для сложения векторов и определения длины суммы векторов нужно извлечь квадратный корень из каждой части равенства, тогда получится формула длины:

В случае вычитания векторов () происходит сложение вектора с вектором , противоположным вектору , то есть имеющим ту же длину, но противоположным по направлению. Углы между и и и между и являются смежными углами, у них, как уже было отмечено, одна сторона общая, а другие стороны лежат на одной прямой. В случае вычитания векторов для нахождения длины разности векторов нужно знать следующее свойство косинусов смежных углов:

косинусы смежных углов равны по абсолютной величине (величине по модулю), но имеют противоположные знаки.

Сложение векторов — решение примеров

Пример 1. Векторы и образуют угол . Их длины: и . Выполнить сложение векторов и найти их сумму . Выполнить вычитание векторов и найти их разность .

Решение. Из элементарной тригонометрии известно, что .

Шаг 1. Выполняем сложение векторов. Находим длину суммы векторов, поставляя в формулу длины косинус угла, смежного с углом между векторами:

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Выполнить сложение и вычитание векторов самостоятельно, а затем посмотреть решение

Пример 2. Векторы и образуют угол . Их длины: и . Выполнить сложение векторов и найти их сумму . Выполнить вычитание векторов и найти их разность .

Пример 3. Даны длины векторов и длина их суммы . Найти длину их разности .

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус угла, смежного с углом между векторами и находим его:

Не забываем, что косинус смежного угла получился со знаком минус. Это значит, что косинус «изначального» угла будет со знаком плюс.

Шаг 2. Выполняем вычитание векторов. Находим длину разности векторов, подставляя в формулу косинус «изначального» угла:

Пример 4. Даны длины векторов и длина их разности . Найти длину их суммы .

Шаг 1. По теореме косинусов составляем уравнение, чтобы найти косинус «изначального» угла (задача обратная по отношению к примеру 1) и находим его:

Шаг 2. Меняем знак косинуса и получаем косинус смежного угла между и :

Шаг 3. Выполняем сложение векторов. Находим длину суммы векторов, подставляя в формулу косинус смежного угла:

Пример 5. Векторы и взаимно перпендикулярны, а их длины . Найти длину их суммы и и длину их разности .

Два смежных угла, как нетрудно догадаться из приведённого в начале урока определения, в сумме составляют 180 градусов. Следовательно, смежный с прямым углом (90 градусов) угол — тоже прямой (тоже 90 градусов). Косинус такого угла равен нулю, то же самое относится и к косинусу смежного угла. Поэтому, подставляя это значение в выражения под корнем в формуле длины суммы и разности векторов, получаем нули как последние выражения — произведения под знаком корня. То есть длины суммы и разности данных векторов равны, вычисляем их:

Пример 6. Какому условию должны удовлетворять векторы и , чтобы имели место слелующие соотношения:

1) длина суммы векторов равна длине разности векторов, т. е. ,

2) длина суммы векторов больше длины разности векторов, т. е. ,

3) длина суммы векторов меньше длины разности векторов, т. е. ?

Находим условие для первого соотношения. Для этого решаем следующее уравнение:

То есть, для того, чтобы длина суммы векторов была равна длине их разности, необходимы, чтобы косинус угла между ними и косинус смежного ему угла были равны. Это условие выполняется, когда углы образуют прямой угол.

Находим условие для второго соотношения. Решаем уравнение:

Найденное условие выполняется, когда косинус угла между векторами меньше косинуса смежных углов. То есть, чтобы длина суммы векторов была больше длины разности векторов, необходимо, чтобы углы образовали острый угол (пример 1).

Находим условие для третьего соотношения. Решаем уравнение:

Найденное условие выполняется, когда косинус угла между векторами больше косинуса смежных углов. То есть, чтобы длина суммы векторов была меньше длины разности векторов, необходимо, чтобы углы образовали тупой угол.

Источник статьи: http://function-x.ru/vectors_cosinus.html

Вычитание векторов. Как найти разность векторов

Эксперт по предмету «Математика»

С нами работают 108 689 преподавателей из 185 областей знаний. Мы публикуем только качественные материалы

Откладывание вектора от данной точки

Для того, чтобы ввести разность векторов, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

От любой точки $K$ можно отложить вектор $overrightarrow$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

В этом случае, очевидно, что искомый вектор — вектор $overrightarrow$.

Рисунок 2. Иллюстрация теоремы 1

Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

Теорема доказана.

Вычитание векторов. Правило первое

Пусть нам даны векторы $overrightarrow$ и $overrightarrow$.

Построение разности двух векторов рассмотрим с помощью задачи.

Рисунок 3. Разность двух векторов

По правилу треугольника для построения суммы двух векторов видим, что

Из определения 2, получаем, что

Вычитание векторов. Правило второе

Вспомним следующее необходимое нам понятие.

Вектор $overrightarrow$ называется произвольным для вектора $overrightarrow$, если эти векторы противоположно направлены и имеют равную длину.

Для того чтобы ввести второе правило для разности двух векторов, нам необходимо в начале ввести и доказать следующую теорему.

Доказательство.

Прибавим к обеим частям вектор $left(-overrightarrowright)$, получим

Так как векторы $overrightarrow$ и $left(-overrightarrowright)$ противоположны, то $overrightarrow+left(-overrightarrowright)=overrightarrow<0>$. Имеем

Теорема доказана.

Пример задачи на понятие разности векторов

а) Произведем сложение по правилу треугольника, получим

Из первого правила разности двух векторов, получаем

б) Так как $overrightarrow=overrightarrow$, получим

Используя правило треугольника, окончательно имеем

Эксперт по предмету «Математика»

С нами работают 108 689 преподавателей из 185 областей знаний. Мы публикуем только качественные материалы

Эксперты на Автор24 помогут сделать любую учебную работу!

Эксперты на Автор24 помогут сделать любую учебную работу!

Источник статьи: http://spravochnick.ru/matematika/vektory/vychitanie_vektorov/

Сложение и вычитание векторов

Векторы: , , , ,
Нулевой вектор:
Координаты векторов: , , , , ,

Определение 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).

Теорема 1 От любой точки можно отложить вектор единственный .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором .

Вектор не является нулевым.

Пусть точка является началом вектора , а точкой — конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор — вектор, сонаправленный с вектором (рис.2)

Из данного выше построения сразу же будет следовать единственность данного вектора.

Сумма векторов. Сложение векторов. Правило треугольника

Суммой двух векторов и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

Суммой нескольких векторов , , называется вектор , получающийся в результате последовательного сложения данных векторов.

Такая операция выполняется по правилу многоугольника.

Коммутативный закон сложения

Ассоциативный закон сложения

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора выполняется равенство

Для произвольных точек справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Разность векторов. Вычитание векторов

Разностью двух векторов и называется вектор при условии:
, если

Разность векторов и равна сумме вектора и противоположного вектора :

Разность двух одинаковых векторов равна нулевому вектору :

Длина нулевого вектора равна нулю:

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.

Умножение вектора на число

Пусть нам дан вектор и действительное число .

Определение Произведением вектора на действительное число называется вектор удовлетворяющий следующим условиям:

Векторы и сонаправлены, при и противоположно направлены, если

Источник статьи: http://calcsbox.com/post/slozenie-i-vycitanie-vektorov.html

Сложение и вычитание векторов

Векторы: , , , ,
Нулевой вектор:
Координаты векторов: , , , , ,

Определение 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).

Теорема 1 От любой точки можно отложить вектор единственный .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором .

Вектор не является нулевым.

Пусть точка является началом вектора , а точкой — конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор — вектор, сонаправленный с вектором (рис.2)

Из данного выше построения сразу же будет следовать единственность данного вектора.

Сумма векторов. Сложение векторов. Правило треугольника

Суммой двух векторов и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

Суммой нескольких векторов , , называется вектор , получающийся в результате последовательного сложения данных векторов.

Такая операция выполняется по правилу многоугольника.

Коммутативный закон сложения

Ассоциативный закон сложения

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора выполняется равенство

Для произвольных точек справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Разность векторов. Вычитание векторов

Разностью двух векторов и называется вектор при условии:
, если

Разность векторов и равна сумме вектора и противоположного вектора :

Разность двух одинаковых векторов равна нулевому вектору :

Длина нулевого вектора равна нулю:

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.

Умножение вектора на число

Пусть нам дан вектор и действительное число .

Определение Произведением вектора на действительное число называется вектор удовлетворяющий следующим условиям:

Векторы и сонаправлены, при и противоположно направлены, если

Источник статьи: http://calcsbox.com/post/slozenie-i-vycitanie-vektorov.html

Сложение и вычитание векторов

Векторы: , , , ,
Нулевой вектор:
Координаты векторов: , , , , ,

Определение 1 Если точка начала какого-либо вектора , то говорят, что вектор отложен от точки (рис. 1).

Теорема 1 От любой точки можно отложить вектор единственный .

Существование: Имеем два следующих случая:

Здесь получаем, что искомый нами вектор совпадает с вектором .

Вектор не является нулевым.

Пусть точка является началом вектора , а точкой — конец вектора . Проведем через точку прямую параллельную вектору . Будем откладывать на прямой отрезки и . Рассмотрим векторы и . Из этих двух векторов нужный нам вектор — вектор, сонаправленный с вектором (рис.2)

Из данного выше построения сразу же будет следовать единственность данного вектора.

Сумма векторов. Сложение векторов. Правило треугольника

Суммой двух векторов и называется третий вектор , проведенный из начала к концу , если начало вектора совпадает с концом вектора .

Сложение векторов выполняется по правилу треугольника или по правилу параллелограмма.

Суммой нескольких векторов , , называется вектор , получающийся в результате последовательного сложения данных векторов.

Такая операция выполняется по правилу многоугольника.

Коммутативный закон сложения

Ассоциативный закон сложения

Сумма векторов в координатах
При сложении двух векторов соответствующие координаты складываются.

Отметим несколько свойств сложения двух векторов:

Для произвольного вектора выполняется равенство

Для произвольных точек справедливо следующее равенство

Замечание Таким способом также можно строить сумму любого числа векторов. Тогда оно будет носить название правила многоугольника.

Разность векторов. Вычитание векторов

Разностью двух векторов и называется вектор при условии:
, если

Разность векторов и равна сумме вектора и противоположного вектора :

Разность двух одинаковых векторов равна нулевому вектору :

Длина нулевого вектора равна нулю:

Разность векторов в координатах
При вычитании двух векторов соответствующие координаты также вычитаются.

Умножение вектора на число

Пусть нам дан вектор и действительное число .

Определение Произведением вектора на действительное число называется вектор удовлетворяющий следующим условиям:

Векторы и сонаправлены, при и противоположно направлены, если

Источник статьи: http://calcsbox.com/post/slozenie-i-vycitanie-vektorov.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *