Меню

Как найти диагональ ромба если известна высота



Диагонали ромба онлайн

С помощю этого онлайн калькулятора ромба можно найти длину диагоналей ромба по известным элементам. Для нахождения диагоналей ромба введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

1. Диагонали ромба через высоту и угол

Пусть известны высота и угол ромба (Рис.1).

Покажем, что диагонали ромба через высоту и угол вычисляются по формулам

Формула стороны ромба через высоту и угол имеет следующий вид:

Поскольку диагонали ромба перпендикулярны и делятся пополам точкой их пересечения (свойства 5 и 6 ромба), то треугольник AOB прямоугольный. Тогда из теоремы синусов, имеем:

Подставляя (3) в (4) и (5), и учитывая формулу синуса двойного угла ( small sin alpha=2sin frac<2>cos frac <2>,) получим:

Мы вывели формулы диагоналей ромба (1) и (2) через высоту и угол.

2. Диагонали ромба через площадь и высоту

Рассмотрим ромб с высотой h и площадью S (Рис.2).

Покажем, что диагонали ромба через высоту и площадь вычисляются по формулам:

В параграфе 1 мы вывели формулы длин диагоналей (6), (7) через высоту и угол. Покажем, что угол ромба через площадь и высоту вычисляется формулой (8).

В статье Сторона ромба мы вывели формулы стороны ромба через площадь и высоту, а также через высоту и угол:

Заметим, что высота ромба не может быть больше стороны ромба ( ( small h≤a ) ) и, следовательно, ( small h^2≤acdot h=S .)

3. Диагонали ромба через площадь и угол

Выведем формулу вычисления диагоналей ромба через площадь и угол. В статье Площадь ромба были выведены формулы площади ромба через угол и противолежащую диагональ и через угол и диагональ из данного угла:

Из (11) и (12) найдем ( small d_1 ) и ( small d_2: )

4. Диагональ ромба через угол и противолежащую диагональ

Пусть известна один из углов α=∠ABC ромба и противолежащая диагональ d1=AC (Рис.4). Выведем формулу вычисления диагонали d2=BD ромба.

Проведем другой диагональ BD. Как было отмечено выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Кроме этого, диагонали ромба делят углы ромба пополам. Для прямоугольного треугольника AOB, имеем:

Откуда, учитывая, что (small AO=frac, ) (small BO=frac, ) получим формулу диагонали ромба через угол и противолежащую диагональ:

5. Диагональ ромба через угол и диагональ из данного угла

Пусть известны один из углов α=∠ABC ромба и диагональ из данного угла d2=BD (Рис.5). Выведем формулу вычисления диагонали d1=AC ромба.

6. Диагонали ромба через сторону и угол

Пусть известны сторона ромба и угол (Рис.6). Найдем диагонали ромба.

В статье Сторона ромба мы вывели формулу стороны ромба через угол и противолежащую диагональ, а также формулу стороны ромба через угол и диагональ из данного угла:

Получили формулы диагоналей ромба через угол и сторону ((19),(20)).

7. Диагонали ромба через площадь и радиус вписанной окружности

Пусть известны площадь ромба и радиус впианной в ромб окружности (Рис.7). Найдем диагонали ромба.

В параграфе 2 мы вывели формулы диагоналей ромба через площадь и высоту. Учитывая, что высота ромба равна радиусу вписанной в ромб окружности, умноженная на 2 (( small h=2r )), формулы (6)−(8) примут следующий вид:

Получили формулы длин диагоналей ромба через площадь и радиус вписанной окружности.

Источник статьи: http://matworld.ru/geometry/diagonali-romba.php

Как найти диагональ ромба, онлайн-калькулятор

Диагональ параллелограмма – это отрезок, соединяющий противоположные вершины фигуры. В зависимости от вида геометрической фигуры диагональ обладает важными свойствами, на которые основываются базовые правила и формулы. Рассмотрим подробнее, как найти длину данного отрезка, построенного в параллелограмме с равными сторонами, т.е. ромбе.

Диагональ ромба через сторону и другую известную диагональ

В случае, если в ромбе известны значения одной диагонали (d) и стороны (a) фигуры, прийти к определению длины второго отрезка будет несложно, благодаря тождеству параллелограмма, которое гласит, что сумма квадратов диагоналей равна квадрату стороны, умноженному на 4:

где a — сторона, d — известная диагональ.

Пример. Дан ромб с диагональю равной 6 мм и стороной, длина которой 5 мм. Нужно найти вторую диагональ ромба. d = √(4 * 5² — 6²) = √(4 * 25 — 36) = √(100 — 36) = √64 = 8 мм – длина неизвестной диагонали.

Как найти длину большей диагонали через сторону и острый угол

Найти величину длинной диагонали можно по формуле:

где a — сторона, cos α — острый угол.

Проведенный отрезок, который соединяет противоположные вершины фигуры, делит ее на равнобедренные треугольники. По свойствам равнобедренного треугольника косинус углов при основании равен половине основания (в данном случае диагонали), деленного на боковую сторону (сторону ромба).

Пример. Острый угол между сторонами ромба длиной 6 см равен 45 градусам. Найти биссектрису острого угла ромба (в данном случае диагональ). d = 6 * √(2 + 2 * cos 45°) = 6 * √(2 + 2 * √2 / 2) = 6 * √(2 + 2 * 0,7) = 11см – длинна неизвестного отрезка.

Как найти длину большей диагонали через сторону и известное значение тупого угла

Как уже известно, построенная диагональ в ромбе, делит его на 2 равнобедренных треугольника. Если дополнить картину второй проведенной диагональю, получится прямоугольный треугольник. Косинус половинки тупого угла (c) это отношение прилежащего катета к гипотенузе (стороне ромба a). На основании всех этих свойств можно прийти к простой формуле нахождения нужной диагонали через сторону ромба (в данном случае гипотенузу) и косинус тупого угла:

где a — сторона, cos β — тупой угол

Пример. Дан ромб со стороной 4,65 м, величина тупого угла которого равна 120 градусам. Необходимо найти противолежащую известному углу диагональ. d = 4,65 * √(2 — 2 * cos 120°) = 4,65 * √(2 — 2 * (-0,5) = 8 м – длина неизвестного отрезка.

Как вычислить длину меньшей диагонали через сторону и острый угол

Так как ситуация аналогична предыдущей (только известный противолежащий угол острый), формула нахождения короткой диагонали практически ничем не отличается от алгоритма определения длинного отрезка, соединяющего противолежащие вершины ромба.

где a — сторона, cos α — острый угол

Пример. В ромбе со стороной 4,65 м проведена диагональ, которая является основанием равнобедренного треугольника с углом при вершине равным 52 градусам. Найти основание треугольника (меньшую диагональ). d = 4,65 * √(2 — 2 * cos 52°) = 4 м.

Короткая диагональ ромба через длинную диагональ и острый угол

Аналогично с предыдущей ситуацией, через тангенс острого угла находим величину неизвестного катета (половинку искомой диагонали). Упрощенная формула:

где D — длинная диагональ, α — острый угол

Пример. Острый угол ромба, в котором построена диагональ длиной 11 мм, равен 58 градусам. Найти длину второй диагонали. d = 11 * tg 29° = 6 мм – длина меньшей диагонали ромба.

Короткая диагональ через сторону и тупой угол

Формула для нахождения меньшей диагонали ромба при помощи значения стороны и тупого угла такова:

где a — сторона, cos β — тупой угол

Пример. Дан ромб со стороной 4,65 мм, один из углов которого равен 128 градусов, а меньшая диагональ фигуры – искомая величина. d = a * √(2 + 2 * cos β) = 4,65 * √(2 + 2 * cos 128°) = 4 мм.

Длинная диагональ ромба через короткую диагональ и тупой угол

Длина большей диагонали ромба легко находится по формуле:

где d — короткая диагональ, β — тупой угол

Благодаря теореме Пифагора, зная длину короткой диагонали (половина катета прямоугольного треугольника) и значение тупого угла ромба (половина которого является углом прямоугольного треугольника), не составит труда определить значение большей диагонали ромба через тангенс тупого угла.

Пример. Дан ромб с диагональю 6,5 см, которая является биссектрисой тупого угла величиной 119 градусов. Нужно найти неизвестную диагональ ромба. D = 6,5 * tg (119 / 2) = 11 см – искомая величина.

Диагональ ромба через площадь и другую известную диагональ

Найти любую из двух диагоналей ромба можно по формуле:

где d – длина известного отрезка, а S-площадь фигуры.

Пример. Дан ромб с площадью равной 64 см², его диагональ равна 8,5 см. Необходимо найти длину второго отрезка, соединяющего противолежащие вершины. D = 2 * S / d = 2 * 64 / 8,5 = 15 см .

Ромб относится к плоским выпуклым геометрическим фигурам. Данный вид параллелограмма отличается равными сторонами, а также тем, что его диагонали при пересечении перпендикулярны друг другу. Существуют и другие свойства ромба, которые подробно раскрывают смысл указанных выше формул:

  • Диагонали, пересекаясь под прямым углом, делятся точкой пересечения пополам. Таким образом, они всегда разделяют фигуру на 4 прямоугольных треугольника.
  • Противоположные стороны ромба попарно параллельны.
  • Противолежащие углы равны, а смежные – в сумме образуют 180 градусов.
  • Диагонали служат биссектрисами всех углов ромба.
  • Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4.
  • Если соединить середины сторон ромба, получится прямоугольник.
  • Точка пересечения диагоналей — центр вписанной окружности.

Определение диагонали ромба часто встречается в задачах школьной программы. Найдя данное значение, можно прийти к искомому результату задания. Через диагональ можно найти стороны ромба, площадь, периметр и все внутренние углы ромба.

Геометрия в школьной программе включается в себя немалое количество формул, основанных на теоремах и правилах. Некоторые из которых помогают значительно сократить время для решения задач на контрольной или при выполнении домашней работы. Данная статья поможет быстро прийти к логическому решению задания и правильному результату. Знание и применение выше перечисленных формул способствуют умению решать задачи по геометрии любой сложности.

Источник статьи: http://tamali.net/calculator/2d/rhombus/diagonal/

Высота ромба онлайн

С помощю этого онлайн калькулятора ромба можно найти высоту ромба по известным элементам. Для нахождения высоты ромба введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

1. Высота ромба через сторону и площадь

Формула площади ромба через сторону и высоту имеет следующий вид:

Откуда легко вывести формулу высоты ромба через сторону и площадь:

2. Высота ромба через сторону и угол

Рассмотрим ромб со стороной a и углом α между сторонами (Рис.2). Выведем формулу вычисления высоты ромба через сторону и угол.

Проведем высоту AH. Для прямоугольного треугольника AHB применим теорему синусов:

Откуда получим формулу вычисления высоты ромба через сторону и угол между сторонами:

Заметим, что формула (2) справедлива для любого угла ромба, как для острого, так и для тупого угла. Действительно. Из четвертого свойста ромба (см. статью Ромб) следует, что сумма соседних углов ромба равна 180°. Тогда для угла C можно записать: (small angle C=180°-alpha.) Следовательно (small sin angle C=sin(180°-alpha)=sin alpha.) Получили, что синусы углов ромба равны. Поэтому в качестве угла между сторонами ромба можно выбрать любой угол ромба.

3. Высота ромба через диагонали

Выведем формулу вычисления высоты ромба через диагонали. Плошадь ромба через диагонали вычисляется формулой (см. статью Площадь ромба):

а через сторону и высоту, формулой

Выразим сторону a ромба через диагонали. Поскольку диагонали ромба перпендикулярны и делятся пополам точкой их пересечения (свойства 5 и 6 ромба), то диагонали делят ромб на четыре равных прямоугольных треугольника (Рис.3).

Применим к прямоугольному треугольнику AOB теорему Пифагора:

Подставим (7) в (5) и найдем h:

4. Высота ромба через угол и противолежащую диагональ

Пусть известны один из углов α=∠ABC ромба и противолежащая диагональ d=AC (Рис.4). Выведем формулу вычисления высоты ромба.

Проведем другой диагональ BD. Как было отмечено выше, диагонали ромба разделяют его на четыре равных прямоугольных треугольников. Применим теорему синусов для прямоугольного треугольника AOB:

С другой стороны (см. параграф 2):

Применяя формулу двойного угла для (small sin alpha, ) имеем: (small sin alpha=2 cdot sin frac <2>cdot cos frac <2>. ) Подставляя это равенство в формулу (11), получим формулу высоты ромба через угол и противолежащую диагональ:

5. Высота ромба через угол и диагональ из данного угла

Пусть известны один из углов α=∠ABC ромба и диагональ из данного угла d=BD (Рис.5). Выведем формулу вычисления высоты ромба.

Проведем другой диагональ AC. Как было отмечено в выше, диагонали ромба разделяют его на четыре равных прямоугольных треугольников. Для прямоугольного треугольника AOB, имеем:

Учитывая, что ( small BO=frac) и ( small angle ABO=frac), формулу (13) можно записать так:

или, учитывая что (small sin alpha=2 cdot sin frac <2>cdot cos frac <2>, ) получим:

6. Высота ромба через радиус вписанной в ромб окружности

Покажем, что высота ромба через радиус вписанной окружности вычисляется по формуле:

В статье Площадь ромба показали, что площадь ромба через сторону и высоту вычисляется формулой

а площадь ромба через сторону и радиус вписанной окружности − формулой:

Источник статьи: http://matworld.ru/geometry/vysota-romba.php

Формулы ромба

Для расчёта всех основных параметров ромба воспользуйтесь калькулятором.

Свойства ромба

  1. Противолежащие стороны ромба параллельны и равны.
  2. Диагонали ромба перпендикулярны.
  3. Точка пересечения диагоналей делит их пополам.
  4. Диагонали ромба являются биссектрисами его углов.
  5. Диагонали образуют из ромба 4 прямоугольных треугольника.
  6. Любой ромб может содержать окружность с центром в точке пересечения его диагоналей.
  7. Сумма квадратов диагоналей равна квадрату одной из сторон ромба умноженному на четыре

Признаки ромба

  1. Параллелограмм с перпендикулярными диагоналями является ромбом.
  2. Когда в параллелограмме хотя бы одна из диагоналей разделяет оба угла (через которые она проходит) пополам, то эта фигурой будет ромб.
    Примечание: Не каждая фигура (четырехугольник) с перпендикулярными диагоналями будет ромбом, так как прежде всего ромб это частный случай параллелограмма, а следовательно должен иметь все его признаки
  3. Если в параллелограмм можно вписать круг, то он является ромбом

Формулы стороны ромба

Длина стороны ромба через площадь (S) и высоту (AE)

Длина стороны ромба через площадь (S) и синус угла

Длина стороны ромба через диагонали

Длина стороны ромба через диагональ и угол

Длина стороны ромба через периметр

Формулы диагоналей ромба

Длина большой диагонали ромба через сторону и косинус острого угла(∠CDA) или косинус тупого угла(∠DAB)

Длина малой диагонали ромба через сторону и косинус острого угла(∠CDA) или косинус тупого угла(∠DAB)

Длина диагонали ромба через сторону и другую диагональ

Длина диагонали ромба через площадь и другую диагональ

Длина диагонали ромба через тангенс острого tg(∠CDA) или тупого tg(∠DAB) угла и другую диагональ

Формулы площади ромба

Площадь ромба через высоту (AE) и сторону

Площадь ромба через сторону и синус любого угла

$$ S = AB^2 * sin(∠CDA) = AB^2 * sin(∠DAB) $$

Площадь ромба через две диагонали

Площадь ромба через большую диагональ и тангенс острого угла(∠CDA) или малую диагональ и тангенс тупого угла(∠DAB)

Формулы радиуса круга вписанного в ромб

Радиус вписанного круга в ромб через высоту ромба (AE)

Радиус вписанного круга в ромб через площадь и сторону ромба

Радиус вписанного круга в ромб через сторону и синус любого угла

Радиус вписанного круга в ромб через диагональ и синус угла

Радиус вписанного круга в ромб через две диагонали

Источник статьи: http://calc-online24.ru/formula/romb

Чему равна высота ромба по формуле?

В школе учили чему равна высота ромба. А теперь, когда нужно, забыла формулы по которым можно посчитать высоту ромба. Пожалуйста подскажите, какие существуют формулы для расчета высоты?

Ромб — геометрическая фигура, которая имеет четыре равные стороны. Отличие от квадрата — отсутствие прямых углов.

Варианты определения высоты

Если вам известно, чему равна сторона ромба (обозначается буквой а) и его площадь (S), вычислить высоту можно по простой формуле: h=S:a. Основная формула служит для определения площади: S=a*h.

Если для определения высоты по указанной выше формуле у вас не достает данных, вы можете воспользоваться некоторыми другими. Найдя с их помощью нужные значения, вы сможете подставить их в ту, по которой можно определить высоту.

Если вам известна длина диагоналей, вы легко найдете площадь. S=(d1*d2)/2.

Зная периметр ромба, можно найти длину его стороны: P=4a.

Еще одна формула для определения площади. S=a*a*sin (a).

  • S — площадь ромба;
  • a — длина стороны ромба;
  • d1 — длина одной диагонали;
  • d2 — длина второй диагонали;
  • h — высота;
  • Р — периметр;
  • sin (a) — синус угла а.

Важно: существуют еще более сложные формулы, которые помогут определить дополнительные параметры. Как правило, в школьных задачах никто не предоставляет данные, по которым легко определить высоту ромба. Чтобы дать правильный ответ на поставленный вопрос, требуется применение нескольких формул. Совет: нарисуйте небольшую шпаргалку (ромб с обозначение сторон + формулы).

Как найти высоту ромба, если известны диагонали?

Зная диагонали, найти высоту ромба легко. В этом нам поможет теорема Пифагора. И хоть она касается прямоугольных треугольников, в ромбе они тоже есть — их образует пересечение двух диагоналей d1 и d2:

Вообразим, что диагональ 1 равна 30 сантиметрам, а диагональ 2 — 40 см.

Чтобы вычислить высоту, нам придется посчитать площадь ромба и размер одного катета (в ромбе, как известно, они одинаковые).

Подсчитываем величину стороны по теореме Пифагора. Сторона BC — это гипотенуза (потому что лежит напротив тупого угла) треугольника BXD (X — это пересечение диагоналей d1 и d2). А значит размер этой стороны в квадрате равен сумме квадратов сторон BX и XC. Их размер нам тоже известен (диагонали ромба пересечением делятся пополам) — это 20 и 15 сантиметров. Выходит, что длина стороны BC равняется корню от 20 в квадрате и 15 в квадрате. Сумма квадратов диагоналей равняется 625, а если извлечь это число из корня, получаем размер катета, равный 25 сантиметрам.

Вычисляем площадь ромба при помощи двух диагоналей. Для этого умножаем d1 на d2 и делим результат на 2. Получается: 30 умножить на 40 (= 1200) и поделить на 2 — выходит 600 см кв. — это и есть площадь ромба.

Теперь вычисляем высоту, зная длину стороны и площадь ромба. Для этого нужно площадь поделить на длину катета (это и есть формула вычисления высоты ромба): 1200 делим на 25 — выходит 48 сантиметров. Это окончательный ответ.

Как найти высоту ромба, если известна площадь и периметр (какая формула)?

Ознакомьтесь со всеми формулами расчета площади ромба:

Чтобы узнать высоту, нам нужна самая первая формула (Площадь = Высота умножить на Длину стороны).

Допустим, что периметр равен 124 см, а площадь — 155 см кв.

Нам играет на руку то, что у ромба все стороны одинаковые, потому его периметр — это 4 умножить на длину одного катета.

Чтобы подсчитать высоту ромба, нужно узнать размер катета. Вот какие действия помогут в решение задачи:

  1. Найдем длину стороны ромба через известный периметр. Для этого значение периметра (124) делим на 4, и получаем значение 31 сантиметр — длина катета.
  2. Подсчитываем высоту через формулу площади. Делим площадь (155 см кв.) на размер катета (31 см) и получаем 5 сантиметров — это размер высоты данной геометрической фигуры.

Как найти высоту ромба, если известна сторона и угол?

Задача кажется сложной, но это не так. Представим, что размер катета ромба равен корню из трех, а угол — 90 градусам.

Чтобы посчитать размер высоты, используем формулу площади ромба (сторона в квадрате умножить на синус угла). Чтобы узнать синус любого градуса, воспользуйтесь таблицей в моем ответе. Синус 90 градусов равняется 1, потому найти высоту будет очень просто. Получается, что площадь равна квадрату длины стороны (3) умножить на синус 90 гр. (1), что в итоге дает ответ- 3 см кв.

А потом делим полученную площадь на размер катета: 3 поделить на корень из 3, и получаем высоту ромба — √3.

Как посчитать высоту ромба, если известна сторона и диагональ?

В этой задаче нужно использовать прямоугольный треугольник, который образован пересечением диагоналей.

Допустим, что сторона равна 10 см, а диагональ — 12 см.

Находим размер половины второй диагонали при помощи теоремы Пифагора. Гипотенуза в нашем случае — это сторона, потому величина половины диагонали будет равна разнице квадрата катета (10 в квадрате) и квадрата половины известной диагонали (6 в квадрате). Выходит, что нужно от 100 отнять 36 — имеем 64 сантиметра. Добываем корень из этого числа и получаем длину половины второй диагонали — 8 см. А полная длина равна 16 сантиметрам.

Подсчитываем площадь ромба при помощи двух диагоналей. Умножаем длину первой диагонали (12 см) на длину второй (16 см) и делим это на 2 — получаем 96 см кв. (это площадь ромба).

Вычисляем высоту, зная размер стороны и площадь. Для этого 96 поделите на 10 — выходит 9,6 сантиметров — это окончательный ответ.

Источник статьи: http://vovet.ru/q/chemu-ravna-vysota-romba-po-formule-1a7.html

Найти высоту ромба онлайн

Ромб – это фигура, являющаяся параллелограммом. Но его особенность в том, что он обладает четырьмя одинаковыми сторонами. Имеет некоторые важные геометрические свойства, а если быть точнее:

  • Два угла будут равны, если они противоположные.
  • Точка пересечения делить диагонали пополам.
  • Стороны, которые находятся друг напротив друга, попарно равны.
  • Если сложить градусную меру соседних углов, то получится 180 градусов.
  • Биссектрисами ромба являются все его диагонали

Через диагонали

Бывают случаи, когда из всех возможных данных нам известны только две диагонали: длинная и короткая, тогда математики применяют такую формулу:

где h – высота ромба, D – длинная диагональ, d – короткая диагональ.

Пример. Имеем ромб ABCD, длинная диагональ равна 7 см, а короткая – 4 см. В условиях сказано, что нужно найти высоту, округлив ответ до десятых. Используя предыдущую формулу, подставляем вместо переменных следующие числа: h = 7 * 4 / (√7² + 4²) = 3.4 . Ответ: 3.4 см.

Через диагонали и сторону

Когда в условиях задачи нам даны обе диагонали (и короткая, и длинная) вместо с одной из сторон, то нужно следовать этой формуле:

где h – высота, D – длинная диагональ, d – короткая диагональ, a – одна из сторон

Пример. Решим задачу. Дан ромб ABCD. Имеется две диагонали: короткая диагональ равна 3 см, а длинная 6. Сторона AB в длину составляет 8 см. Найдите высоту, ответ дайте в десятых. Режим задачу при помощи формулы: h = 6 * 3 / 2 * 8 = 1,2 см. Ответ: 1,2 см.

Через длинную диагональ и синус острого угла

Если в задаче дан синус острого угла, а так же нам известно значение длинной диагонали, то можно использовать данный способ:

где h – высота, D – длинная диагональ, sin α – синус острого угла.

Пример. Приведём одну из возможных ситуаций. В задаче представлен ромб ABCD. Нам неизвестны его стороны, однако мы знаем, что длинная диагональ равна 9 сантиметрам. Так же мы имеем острый угол α в 30°. Нужно найти его высоту, ответ округляем до десятых. Для этого мы умножаем диагональ на sin острого угла, так как он равен 30°, то его синус равен 1/2, соответственно: h = 9 * 1/2 = 2.3 сантиметра. Ответ: 2.3 см.

Через короткую диагональ и синус тупого угла

Допустим, в условиях прописано, какая длина у короткой диагонали. Так же мы знаем градус одного тупого угла. Для решения задач подобного типа используем эту формулу:

где h – высота, d – короткая диагональ, β – синус тупого угла

Пример. Решим одну из задач. Нам дан ромб ABCD. У этой фигуры короткая диагональ равна 10 см, мы знаем, что в ромбе есть тупой угол в 150°. Найдите высоту с точностью до десятых. Чтобы узнать необходимую величину, необходимо умножить D, что обозначает длинную диагональ на sin 150°/2, получается: h = 10 * (sin 150º / 2) = 9.8 сантиметров. Ответ: 9.8 см.

Через сторону и синус любого угла

Для того чтобы найти высоту фигуры используя сторону и любой синус, нужно обратиться к следующей формуле:

где h является высотой, a – сторона ромба, sin α – синус любого угла, который мы решили взять

Пример. Рассмотрим формулу на примере. Имеем ромб ABCD, где сторона CB = 5 сантиметров, а угол C равен 90°. Чтобы найти его высоту, нам необходимо умножить CB на sin угла C. Так как синус угла 90 градусов равен 1, соответственно, получаем следующее выражение: h = 5 • 1 = 5 сантиметров составляет высота ромба ABCD. Ответ: 5 см

Если быть внимательным, то можно заметить необычные признаки ромба, по которым его легко отличить от других:

  • Если в параллелограмме есть возможность вписать окружность, то это ромб.
  • Если в параллелограмме все высоты равны, то это ромб.
  • Если в параллелограмме под углом в 90° пересекаются диагонали, то это ромб.
  • Если в параллелограмме диагонали перпендикулярны друг друга, кроме этого ещё и делятся точкой пересечения, то это ромб.
  • Если все четыре стороны параллелограмма равны, то это ромб.

Задачи на нахождение различных величин ромба встречаются во многих экзаменах, в том числе на ОГЭ и ЕГЭ.

Порой в задачах необходимо определить высоту ромба, чтобы при её помощи узнать основную неизвестную величину. К примеру, для того, чтобы вычислить площадь ромба, в одной из формул нам необходимо знать высоту: , где a – это одна из сторон ромба, а h – высота. По обратной формуле можно будет найти сторону ромба, для этого будет необходимо разделить площадь на высоту: .

Источник статьи: http://tamali.net/calculator/2d/rhombus/height/

Формулы ромба

  • Формулы площади ромба:
  • Формула периметра ромба:

Ромб — это четырёхугольник, у которого все стороны равны. Ромб можно рассматривать как частный случай параллелограмма, у которого или две смежные стороны равны, или диагонали взаимно перпендикулярны, или диагональ делит угол пополам. Ромб с прямыми углами называется квадратом.

Формулы площади ромба:

Площадь геометрической фигуры — часть поверхности, ограниченная замкнутым контуром данной фигуры. Величина площади ромба выражается числом заключающихся в него квадратных единиц.

1) Площадь ромба равна произведению длины его стороны на высоту (a, h).

2) Площадь ромба равна половине произведения его диагоналей.

S — площадь ромба

a — длина основания ромба

h — длина высоты ромба

d1 — длина 1-ой диагонали

d2 — длина 2-ой диагонали

Формула периметра ромба:

Периметр геометрической фигуры — суммарная длина границ плоской геометрической фигуры. Периметр имеет ту же размерность величин, что и длина.

1) Периметр ромба равен сумме 4-х длин его сторон или произведению длины любой его стороны на четыре (так как у ромба длины всех сторон равны).

P — периметр ромба

a — длина стороны ромба

Остались вопросы?

Высота ромба представляет собой перпендикуляр, который опущен из одного из его углов на сторону, противоположную данному углу.

Обозначим имеющийся ромб как ABCD. Из его угла В проведем высоту ВН, после чего получим треугольник АВН с прямым углом. Известно, что длина всех сторон ромба одинаковая, а длина АН равна половине длины АВ. Зная это и используя теорему, которая является обратной теореме о 30-градусном угле, можно провести доказательство того, что угол АВН равен 30 градусам.

Учитывая то, что сумма всех углов треугольника равна 180 градусом, можно найти неизвестную величину третьего угла треугольника:

Известна формула площади (S) ромба, которая представляет собой произведение длины его стороны (а) на высоту (h), проведенную к ней:

Есть возможность выразить высоту из приведенной выше формулы. Она будет равна отношению площади ромба к длине его стороны:

Площадь (S) треугольника с прямым углом рассчитывается путем деления пополам произведения длин его катетов. В данном случае она будет равна:

Площадь ромба определяется умножением длины его стороны на высоту, проведенную к ней. Если принять высоту за х, и учесть, что площадь ромба равна площади прямоугольного треугольника (6 см.кв.), то:

Отсюда можно найти значение х:

Ответ: высота ромба составляет 1,2 см.

Диагонали, проведенные в ромбе, делят эту фигуру на четыре треугольника, которые являются равными. Длины катетов этих треугольников составляют 3 см. и 4 см. Такой вывод можно сделать на основании того, что в точке пересечения диагоналей они делятся пополам. Гипотенуза (с) треугольников представляет собой сторону ромба. Ее длина равна:

Следовательно, сторона ромба также равна 5 см.

Площадь ромба высчитывается как произведение длин его диагоналей, деленное пополам:

Известна также другая формула, используемая для вычисления площади ромба, в которой длина его стороны (а) умножается на высоту(h):

Из данной формулы выражаем высоту:

Ответ: Высота ромба составляет 4,8 см.

Высоту ромба можно рассчитать, если его диагонали (d1 и d2)и сторона (а) – известные величинами. В этом случае для определения неизвестной высоты следует пользоваться приведенной ниже формулой:

Периметр (Р) ромба равен сумме длин всех его сторон (а) и вычисляется по следующей формуле:

В данном случае периметр ромба равен 48 см., это значит, что:

Площадь ромба (S) является произведением длины его стороны (а) и высоты (h), проведенной к этой стороне:

В задании сказано, что площадь ромба – 60 см.кв. Значит:

Находим неизвестную высоту:

Согласно формуле расчета периметра (Р) ромба, он равен сумме длин всех его сторон (а) (Р=а+а+а+а). Известно, что все стороны ромба имеет одинаковую длину. Из этого следует, что длина одной стороны будет равна ¼ части его периметра:

Площадь (S) ромба можно высчитать путем умножения длины его стороны (а) на высоту (h), проведенную к ней:

Отсюда можем найти высоту (h), разделив площадь на длину стороны ромба:

Ответ: Высота ромба составляет 6 см.

Периметр (Р) ромба равен сумме длин всех его сторон (а), длины которых равны. Это значит:

Предположим, что длина одной из диагоналей ромба равна 10х, тогда длина второй его диагонали будет выглядеть как 24х. Отношение их длин можно записать в следующем виде:

Доказано, что диагонали ромба взаимно перпендикулярны и в точке пересечения они делятся пополам, при этом образуя четыре равных треугольника с прямым углом.

Теорема Пифагора гласит, что сумма длин его катетов, возведенных во вторую степень, равна длине гипотенузы, которая также возведена в квадрат:

Для данной задачи это равенство записывается так:

169х²=169; следовательно, х2 = 1. Значит х тоже будет равен 1.

Длина диаметра, обозначенного как 10х, равна 10 см. (10*1), а длина второго диаметра, который обозначен как 24х, равна 24 см. (24*1).

Площадь (S) ромба рассчитывается как:

Из этого можно составить следующее уравнение:

h= d₁*d₂/2*а=10·24:26=240/26=120/13 см.

Ромб имеет четыре высоты. Все они имеют равные длины. Вывод об этом можно сделать, рассмотрев все треугольные фигуры, элементами которых являются эти высоты. Есть возожность высчитать высоту ромба при помощи различных параметров, которые могут быть указаны в условии конкретной задачи.

Предположим, что нам известна площадь (S) ромба и длина его стороны (а). В этом случае высота ромба будет равна отношению его площади к длине высоты: h = S/a.

Если же по условию задачи известны длины диагоналей ромба d1 и d2, а также его сторона а, то высоту можно рассчитать так: h = (d1*d2 )/a.

В случае, когда известна длина стороны (а) ромба и угол А, находящийся между смежными сторонами, то для расчета высоты ромба используется следующая формула:

Существуют также и другие варианты вычисления длины высоты ромба на основании того, какие величины будут известны по условию задания. Однако ключевыми параметрами, используя которые можно вычислить высоту ромба, являются диагонали, длина любой его стороны и угол, образованный между смежными сторонами.

Площадь ромба можно рассчитать одним из трех способов:

1. S = a² sin a, в которой α — образованный двумя сторонами угол, a — сторона.

2. S = ah, или Длина стороны ромба, умноженная на его высоту.

3. S = (d1*d2)/2, в которой d1 и d2 – длины диагоналей фигуры.

Зная, чему равен периметр ромба, можно вычислить длину его стороны:

Известно, что высота данной фигуры меньше ее стороны на 1,7 см. Теперь можем определить длину высоты:

Площадь ромба можно найти, умножив его сторону на высоту, которая на нее опущена:

Если длины диагоналей фигуры относятся как 4/3, то их половины будут относиться также:

Теперь можно найти площадь:

Площадь ромба можно описать как сумму площадей 2-х треугольных фигур, основанием которых является одна диагональ, а вторая диагональ ромба представляет собой сумму длин высот этих фигур. Диагонали ромба при пересечении образуют угол в 90 градусов. На основании этого можно найти площадь ромба следующим образом:

Известно, что, пересекаясь, диагонали ромба образуют угол в 90 градусов и в точке пересечения делятся пополам.

Для расчета площади ромба через диагонали нужно перемножить их длины, а затем разделить полученное число на два:

Для примера можно рассмотреть ромб, одна диагональ которого равна 5 см., а вторая – 4 см. Тогда его площадь будет равна:

S ромба возможно вычислить, перемножив длину одной из его сторон (а) и высоту (h). Формула записывается так:

Источник статьи: http://www.webmath.ru/poleznoe/formules15.php

Сторона ромба онлайн

С помощю этого онлайн калькулятора ромба можно найти длину стороны ромба по известным элементам. Для нахождения стороны ромба введите известные данные в ячейки и нажмите на кнопку «Вычислить». Теоретическую часть смотрите ниже.

Открыть онлайн калькулятор

1. Сторона ромба через высоту и площадь

Пусть известны площадь и высота ромба (Рис.1).

Покажем, что сторона ромба через высоту и площадь вычисляется формулой

Формула площади ромба через сторону и высоту имеет следующий вид:

Откуда легко вывести формулу (1).

2. Сторона ромба через высоту и угол

Рассмотрим ромб с высотой h и углом α между сторонами (Рис.2). Выведем формулу вычисления стороны ромба через высоту и угол.

Для прямоугольного треугольника AHB применим теорему синусов:

Откуда получим формулу вычисления высоты ромба через сторону и угол между сторонами:

Заметим, что формула (2) справедлива для любого угла ромба, как для острого, так и для тупого. Действительно. Из четвертого свойста ромба (см. статью Ромб) следует, что сумма соседних углов ромба равна 180°. Тогда для угла C можно записать: (small angle C=180°-alpha.) Следовательно (small sin angle C=sin(180°-alpha)=sin alpha.) Получили, что синусы углов ромба равны. Поэтому в качестве угла между сторонами ромба можно выбрать любой угол ромба.

3. Сторона ромба через диагонали

Выведем формулу вычисления сторон ромба через диагонали.

Выразим сторону a ромба через диагонали. Поскольку диагонали ромба перпендикулярны и делятся пополам точкой их пересечения (свойства 5 и 6 ромба), то диагонали делят ромб на четыре равных прямоугольных треугольника (Рис.3).

Применим к прямоугольному треугольнику AOB теорему Пифагора:

4. Сторона ромба через угол и противолежащую диагональ

Пусть известны один из углов α=∠ABC ромба и противолежащая диагональ d=AC (Рис.4). Выведем формулу вычисления сторон ромба.

Проведем другой диагональ BD. Как было отмечено выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Кроме этого, диагонали ромба делят углы ромба пополам. Применим теорему синусов для прямоугольного треугольника AOB:

Откуда получим формулу стороны ромба через угол и противолежащую диагональ:

Формулу (4) можно записать и в другом виде, применяя формулу синуса половинного угла:

5. Сторона ромба через угол и диагональ из данного угла

Пусть известны один из углов α=∠ABC ромба и диагональ из данного угла d=BD (Рис.5). Выведем формулу вычисления высоты ромба.

Проведем другой диагональ AC. Как было отмечено в выше, диагонали ромба перпендикулярны и делятся пополам точкой их пересечения. Для прямоугольного треугольника AOB, имеем:

Учитывая, что ( small BO=frac) и ( small angle ABO=frac), формулу (13) можно записать так:

Формулу (8) можно записать и в другом виде, применяя формулу косинуса половинного угла:

6. Сторона ромба через площадь и радиус вписанной в ромб окружности

В статье Площадь ромба показали, что площадь ромба через сторону и радиус вписанной в ромб окружности вычисляется формулой

7. Сторона ромба через площадь и угол

В статье Площадь ромба показали, что площадь ромба через сторону и угол вычисляется формулой

Получили формулу сторон ромба через площадь и угол.

Источник статьи: http://matworld.ru/geometry/storona-romba.php

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *