Меню

Как из h2so4 получить na2so4



Сульфат натрия: способы получения и химические свойства

Сульфат натрия — соль щелочного металла натрия и серной кислоты. Белый. Плавится и кипит без разложения. Хорошо растворяется в воде (гидролиз не идет).

Относительная молекулярная масса Mr = 142,04; относительная плотность для тв. и ж. состояния d = 2,66; tпл = 884º C; tкип = 1430º C.

Способ получения

1. В результате взаимодействия разбавленной серной кислоты и гидроксида натрия образуется сульфат натрия и вода:

2. При температуре 450–800º C гидросульфат натрия реагирует с хлоридом натрия. В результате реакции образуется сульфат натрия и хлороводородная кислота:

NaHSO4 + NaCl = Na2SO4 + HCl

3. В состоянии кипения в результате реакции между твердым хлоридом натрия и концентрированной серной кислотой происходит образование сульфата натрия и газа хлороводорода:

4. Твердый сульфид натрия и кислород взаимодействуют при температуре выше 400º C с образованием сульфата натрия:

5. При взаимодействии концентрированного раствора пероксида водорода и сульфида натрия образуется сульфат натрия и вода:

Качественная реакция

Качественная реакция на сульфат натрия — взаимодействие его с хлоридом бария, в результате реакции происходит образование белого осадка , который не растворим в азотной кислоте:

1. При взаимодействии с хлоридом бария , сульфат натрия образует сульфат бария и хлорид натрия:

Химические свойства

1. Сульфат натрия может реагировать с простыми веществами :

1.1. Сульфат натрия реагирует со фтором при температуре 100–150º C. При этом образуются фторид натрия, сульфурилфторид и кислород:

1.2. С водородом сульфат натрия реагирует при температуре 550–600º C, в присутствии катализатора Fe2O3 с образованием сульфида натрия и воды:

2. Сульфат натрия вступает в реакцию со многими сложными веществами :

2.1. Сульфат натрия реагирует с гидроксидом бария с образованием гидроксида натрия и сульфата бария:

2.2. При взаимодействии с концентрированной серной кислотой твердый сульфат натрия образует гидросульфат натрия:

2.3. Сульфат натрия реагирует с оксидом серы (VI) . Взаимодействие сульфата натрия с оксидом серы (VI) приводит к образованию пиросульфата натрия:

2.4. Сульфат натрия взаимодействует с хлоридом бария . При этом образуются хлорид натрия и сульфат бария:

Источник статьи: http://chemege.ru/sulfat-natriya/

Как из H2SO4 получить Na2SO4?

Как из H2SO4 получить Na2SO4.

2NaOH + H2SO4 = Na2SO4 + 2H2O.

HSO + KOH ПАМАГИТЕ ПАЖАЛУСТА?

HSO + KOH ПАМАГИТЕ ПАЖАЛУСТА.

Установите соответствие между названием соли и уравнением ее гидролиза по первой ступени?

Установите соответствие между названием соли и уравнением ее гидролиза по первой ступени.

Название соли : А) cульфит натрия Б) гидросульфит натрия В) сульфид натрия Г) карбонат натрия Уравнение гидролиза : 1) SO3²⁻ + H2O &lt ; = &gt ; HSO₃⁻ + OH⁻ 2) CO3²⁻ + H2O &lt ; = &gt ; HCO₃⁻ + OH⁻ 3) HSO₃⁻ + H2O &lt ; = &gt ; H2SO₃ + OH⁻ 4) HCO₃⁻ + H2O &lt ; = &gt ; H2CO₃ + OH⁻ 5) S2⁻ + H2O HS⁻ + H +.

Подчеркните сульфат — ион : HSO( — )4, S2( — ), SO(4)2 — , SO3?

Подчеркните сульфат — ион : HSO( — )4, S2( — ), SO(4)2 — , SO3.

Составьте уравнения реакций взаимодействия с водой следующих веществ : калия, кальция, оксида лития?

Составьте уравнения реакций взаимодействия с водой следующих веществ : калия, кальция, оксида лития.

Укажите названия веществ, образующихся в результате реакций.

Из числа приведенных ниже формул веществ выпишите формулы нерастворимых в воде оснований и назовите их : NaSO, CaO, Ca (OH), ZnO, NaOH, HCI, CuO, AI (OH), KOH, NaO, KCO, Ba (OH).

Решите пожалуйста, срочно нужно.

Напишіть рівняння хімічних реакцій за схемою : Fe + O2 — FeO3 + HSO — Fe2(So4)3 + NaOH — Fe(OH)3?

Напишіть рівняння хімічних реакцій за схемою : Fe + O2 — FeO3 + HSO — Fe2(So4)3 + NaOH — Fe(OH)3.

1)определить тип химической связи, укажите направление смещения электронов в следующих веществах : а) LiO, б) HBr, в) KBr, г) BrO, д) Br составить механизм образования б, в, д 2?

1)определить тип химической связи, укажите направление смещения электронов в следующих веществах : а) LiO, б) HBr, в) KBr, г) BrO, д) Br составить механизм образования б, в, д 2.

Из данного перечня выберите вещества с ионным характером связи :

HO, KO, HF, FO, KF, NaOH, HSO ПОЖАЛУЙСТА, ПОМОГИТЕ!

С каким из перечисленных веществ будет взаимодействовать гидроксид натрия ?

С каким из перечисленных веществ будет взаимодействовать гидроксид натрия ?

Почему SO3 + H20 = HSO, а Li2O + H2O = 2LiOH?

Почему SO3 + H20 = HSO, а Li2O + H2O = 2LiOH.

Объясните почему в одном случае при взаимодействии с водой вещества складываются в дном порядке, а в другом — по — другому?

CrCl(3) — — &gt ; CrOHCl(2) — — &gt ; Cr(OH)(3) — — — &gt ; Cr(2)O(3) — — tC — — &gt ; KCrO(2) — — — &gt ; Cr(2)(SO)(4) — — &gt ; Cr((HSO)(4))(3)?

CrCl(3) — — &gt ; CrOHCl(2) — — &gt ; Cr(OH)(3) — — — &gt ; Cr(2)O(3) — — tC — — &gt ; KCrO(2) — — — &gt ; Cr(2)(SO)(4) — — &gt ; Cr((HSO)(4))(3).

Выпишите из приведённых формул веществ — MgO, Ca(OH)₂, Ca(NO₃)₂, H₃PO₄, SO₂, Mg(HCO₃)₂, HCl, Al(H₂PO₄)₃, FeCl₃, HNO₂, FeCl₂, Fe₂(HSO₃)₂, NaOH, Fe₂O₃, KOH — отдельно формулы :а)оксидовб)основанийв)кисл?

Выпишите из приведённых формул веществ — MgO, Ca(OH)₂, Ca(NO₃)₂, H₃PO₄, SO₂, Mg(HCO₃)₂, HCl, Al(H₂PO₄)₃, FeCl₃, HNO₂, FeCl₂, Fe₂(HSO₃)₂, NaOH, Fe₂O₃, KOH — отдельно формулы :

1)определить тип химической связи, укажите направление смещения электронов в следующих веществах : а) LiO, б) HBr, в) KBr, г) BrO, д) Br составить механизм образования б, в, д 2?

1)определить тип химической связи, укажите направление смещения электронов в следующих веществах : а) LiO, б) HBr, в) KBr, г) BrO, д) Br составить механизм образования б, в, д 2.

Из данного перечня выберите вещества с ионным характером связи :

HO, KO, HF, FO, KF, NaOH, NaSO, HSO ПОЖАЛУЙСТА, ПОМОГИТЕ!

На этой странице находится вопрос Как из H2SO4 получить Na2SO4?, относящийся к категории Химия. По уровню сложности данный вопрос соответствует знаниям учащихся 5 — 9 классов. Здесь вы найдете правильный ответ, сможете обсудить и сверить свой вариант ответа с мнениями пользователями сайта. С помощью автоматического поиска на этой же странице можно найти похожие вопросы и ответы на них в категории Химия. Если ответы вызывают сомнение, сформулируйте вопрос иначе. Для этого нажмите кнопку вверху.

Я про алюминийАлюминий – легкий, прочный и пластичный металл. Это один из самых востребованных металлов, и по темпам роста потребления он давно и с большим отрывом оставил позади сталь, никель, медь и цинк. Алюминий без преувеличений можно назвать ..

Тому що рН показує ступінь концентрації катіонів гідрогену у воді, що є дуже важливим для косметики.

1. дано N(NH3) = 4. 816 * 10 ^ 23 — — — — — — — — — — — — — — — — — — — — — — — — — — — — — V(NH3) — ? N(NH3) / N(A) = V(NH3) / Vm V(NH3) = N(NH3) * Vm / N(A) = 4. 816 * 10 ^ 23 * 22. 4 / 6. 02 * 10 ^ 23 = 15. 58 L ответ 15. 58 л 2) дано m(O2)..

Соотвественно правильным ответом будет являться : 4) KCl ; 5) AgCl ; 6) NH4Cl.

Дано W(O) = 47 % — — — — — — — — — — — — — — — — E — ? Е — это неизвестный элемент W(O) = Ar(O) * n / M(X2O3) * 100% 47% = 16 * 3 / 2x + 48 * 100% 94x + 2256 = 4800 X = 27 — это алюминий Al2O3 ответ алюминий.

Напиши нормально не понятно или сфоткай.

В SO3 32 / (32 + 3 * 16) = 0, 4 или 40 %.

Реакции есть на фотографии.

4HCl + MnO2 = MnCl2 + Cl2 + 2H2O соляная кислота отдаёт в свободном виде половину имеющегося хлора. M(Cl общ. ) = 1000 * 0, 365 * 0, 9726 = 355 г масса выделившегося хлора = 355 / 2 = 177, 5 г.

Типы химической реакции соединение, разложение замещение.

Источник статьи: http://himia.my-dict.ru/q/1395240_kak-iz-h2so4-polucit-na2so4/

Серная кислота

Серная кислота — сильная двухосновная кислота, при н.у. маслянистая жидкость без цвета и запаха.

Обладает выраженным дегидратационным (водоотнимающим) действием. При попадании на кожу или слизистые оболочки приводит к тяжелым ожогам.

Замечу, что существует олеум — раствор SO3 в безводной серной кислоте, дымящее жидкое или твердое вещество. Олеум применяется при изготовлении красителей, органическом синтезе и в производстве серной кислот.

Получение

Известны несколько способов получения серной кислоты. Применяется промышленный (контактный) способ, основанный на сжигании пирита, окислении образовавшегося SO2 до SO3 и последующим взаимодействием с водой.

Нитрозный способ получения основан на взаимодействии сернистого газа с диоксидом азота IV в присутствии воды. Он состоит из нескольких этапов:

В окислительной башне смешивают оксиды азота (II) и (IV) с воздухом:

Смесь газов подается в башни, орошаемые 75-ной% серной кислотой, здесь смесь оксидов азота поглощается с образованием нитрозилсерной кислоты:

В ходе гидролиза нитрозилсерной кислоты получают азотистую кислоту и серную:

В упрощенном виде нитрозный способ можно записать так:

Химические свойства

В водном растворе диссоциирует ступенчато.

Сильная кислота. Реагирует с основными оксидами, основаниями, образуя соли — сульфаты.

KOH + H2SO4 = KHSO4 + H2O (гидросульфат калия, соотношение 1:1 — кислая соль)

2KOH + H2SO4 = K2SO4 + 2H2O (сульфат калия, соотношение 2:1 — средняя соль)

С солями реакция идет, если в результате выпадает осадок, образуется газ или слабый электролит (вода). Серная кислота, как и многие другие кислоты, способна растворять осадки.

Серная кислота окисляет неметаллы — серу и углерод — соответственно до угольной кислоты (нестойкой) и сернистого газа.

Реакции разбавленной серной кислоты с металлами не составляют никаких трудностей: она реагирует как самая обычная кислота, например HCl. Все металлы, стоящие до водорода, вытесняют из серной кислоты водород, а стоящие после — не реагируют с ней.

Подчеркну, что реакции разбавленной серной кислоты с железом и хромом не сопровождаются переходом этих элементов в максимальную степень окисления. Они окисляются до +2.

Cu + H2SO4(разб.) ⇸ (реакция не идет, медь не может вытеснить водород из кислоты)

Концентрированная серная кислота ведет себя совершенно по-иному. Водород никогда не выделяется, вместо него с активными металлами выделяется H2S, с металлами средней активности — S, с малоактивными металлами — SO2.

Холодная концентрированная серная кислота пассивирует Al, Cr, Fe, Ni, Be, Co. При нагревании или амальгамировании данных металлов реакция идет.

Обратите особое внимание, что при реакции железа, хрома с концентрированной серной кислотой достигается степень окисления +3. В подобных реакциях с разбавленной серной кислотой (написаны выше) достигается степень окисления +2.

Иногда в тексте задания даны подсказки. Например, если написано, что выделился газ с неприятным запахом тухлых яиц — речь идет об H2S, если же написано, что выделилось простое вещество — речь о сере (S).

© Беллевич Юрий Сергеевич 2018-2022

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник статьи: http://studarium.ru/article/174

Серная кислота

Серная кислота

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравнения реакций
Печь для обжига 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800 о С

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  • температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500 о С. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  • давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота .

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4 – ⇄ H + + SO4 2–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , серная кислота взаимодействует с оксидом магния:

Еще пример : при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например , серная кислота взаимодействует с гидрокарбонатом натрия:

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например , хлорида натрия:

4. Т акже серная кислота вступает в обменные реакции с солями.

Например , серная кислота взаимодействует с хлоридом бария:

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например , серная кислота реагирует с железом. При этом образуется сульфат железа (II):

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

Концентрированная серная кислота является сильным окислителем . При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.

Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например , концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

Источник статьи: http://chemege.ru/sernaya-kislota/

Сера. Химия серы и ее соединений

Положение в периодической системе химических элементов

Сера расположена в главной подгруппе VI группы (или в 15 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение серы

Электронная конфигурация серы в основном состоянии :

Атом серы содержит на внешнем энергетическом уровне 2 неспаренных электрона и две неподеленные электронные пары в основном энергетическом состоянии. Следовательно, атом серы может образовывать 2 связи по обменному механизму, как и кислород. Однако, в отличие от кислорода, за счет вакантной 3d орбитали атом серы может переходить в возбужденные энергетические состояния. Электронная конфигурация серы в первом возбужденном состоянии:

Электронная конфигурация серы во втором возбужденном состоянии:

Таким образом, максимальная валентность серы в соединениях равна VI (в отличие от кислорода). Также для серы характерна валентность — IV.

Степени окисления атома серы – от -2 до +4. Характерные степени окисления -2, 0, +4, +6.

Физические свойства и нахождение в природе

Сера образует различные простые вещества (аллотропные модификации).

Наиболее устойчивая модификация серы – ромбическая сера S8. Это хрупкое вещество желтого цвета .

Моноклинная сера – это аллотропная модификация серы, в которой атомы соединены в циклы в виде «короны» . Это твердое вещество, состоящее из темно-желтых игл, устойчивое при температуре более 96 о С, а при обычной температуре превращающееся в ромбическую серу.

Пластическая сера это вещество, состоящее из длинных полимерных цепей. Коричневая резиноподобная аморфная масса, нерастворимая в воде.

В природе сера встречается:

  • в самородном виде;
  • в составе сульфидов (сульфид цинка ZnS, пирит FeS2, сульфид ртути HgS — киноварь и др.)
  • в составе сульфатов (CaSO4·2H2O гипс, Na2SO4·10H2O — глауберова соль)

Соединения серы

Степень окисления Типичные соединения
+6 Оксид серы(VI) SO3

Галогенангидриды: SО2Cl2

+4 Оксид серы (IV) SO2

Галогенангидриды: SOCl2

–2 Сероводород H2S

Способы получения серы

1. В промышленных масштабах серу получают открытым способом на месторождениях самородной серы, либо из вулканов. Из серной руды серу получают также пароводяными, фильтрационными, термическими, центрифугальными и экстракционными методами. Пароводяной метод — это выплавление из руды с помощью водяного пара.

2. Способ получения серы в лаборатории – неполное окисление сероводорода.

3. Еще один способ получения серы – взаимодействие сероводорода с оксидом серы (IV):

Химические свойства серы

В нормальных условиях химическая активность серы невелика: при нагревании сера активна, и может быть как окислителем, так и восстановителем.

1. Сера проявляет свойства окислителя (при взаимодействии с элементами, которые расположены ниже и левее в Периодической системе) и свойства восстановителя (с элементами, расположенными выше и правее). Поэтому сера реагирует с металлами и неметаллами .

1.1. При горении серы на воздухе образуется оксид серы (IV) :

1.2. При взаимодействии серы с галогенами (со всеми, кроме йода) образуются галогениды серы:

1.3. При взаимодействии фосфора и углерода с серой образуются сульфиды фосфора и сероуглерод:

1.4. При взаимодействии с металлами сера проявляет свойства окислителя, продукты реакции называют сульфидами. С щелочными металлами сера реагирует без нагревания, а с остальными металлами (кроме золота и платины) – только при нагревании.

Например , железо и ртуть реагируют с серой с образованием сульфидов железа (II) и ртути:

Еще пример : алюминий взаимодействует с серой с образованием сульфида алюминия:

1.5. С водородом сера взаимодействует при нагревании с образованием сероводорода:

2. Со сложными веществами сера реагирует, также проявляя окислительные и восстановительные свойства. Сера диспропорционирует при взаимодействии с некоторыми веществами.

2.1. При взаимодействии с окислителями сера окисляется до оксида серы (IV) или до серной кислоты (если реакция протекает в растворе).

Например , азотная кислота окисляет серу до серной кислоты:

Серная кислота также окисляет серу. Но, поскольку S +6 не может окислить серу же до степени окисления +6, образуется оксид серы (IV):

Соединения хлора, например , бертолетова соль , также окисляют серу до +4:

S + 2KClO3 → 3SO2 + 2KCl

Взаимодействие серы с сульфитами (при кипячении) приводит к образованию тиосульфатов:

2.2. При растворении в щелочах сера диспропорционирует до сульфита и сульфида.

Например , сера реагирует с гидроксидом натрия:

При взаимодействии с перегретым паром сера диспропорционирует:

Сероводород

Строение молекулы и физические свойства

Сероводород H2S – это бинарное соединение водорода с серой, относится к летучим водородным соединениям. Следовательно, сероводород бесцветный ядовитый газ, с запахом тухлых яиц. Образуется при гниении. В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода похожа на структуру воды — уголковая молекула. Но валентный угол H-S-H меньше, чем угол H-O-H в воде и составляет 92,1 о .

Способы получения сероводорода

В лаборатории сероводород получают действием минеральных кислот на сульфиды металлов, расположенных в ряду напряжений левее железа.

Например , при действии соляной кислоты на сульфид железа (II):

FeS + 2HCl → FeCl2 + H2S↑

Еще один способ получения сероводорода – прямой синтез из водорода и серы:

Еще один лабораторный способ получения сероводорода – нагревание парафина с серой.

Видеоопыт получения и обнаружения сероводорода можно посмотреть здесь.

Химические свойства сероводорода

1. В водном растворе сероводород проявляет слабые кислотные свойства. Взаимодействует с сильными основаниями, образуя сульфиды и гидросульфиды:

Например , сероводород реагирует с гидроксидом натрия:

H2S + 2NaOH → Na2S + 2H2O
H2S + NaOH → NaНS + H2O

2. Сероводород H2S – очень сильный восстановитель за счет серы в степени окисления -2. При недостатке кислорода и в растворе H2S окисляется до свободной серы (раствор мутнеет):

3. Как сильный восстановитель, сероводород легко окисляется под действием окислителей.

Например, бром и хлор окисляют сероводород до молекулярной серы:

H2S + Br2 → 2HBr + S↓

H2S + Cl2 → 2HCl + S↓

Под действием избытка хлора в водном растворе сероводород окисляется до серной кислоты:

Например , азотная кислота окисляет сероводород до молекулярной серы:

При кипячении сера окисляется до серной кислоты:

Прочие окислители окисляют сероводород, как правило, до молекулярной серы.

Например , оксид серы (IV) окисляет сероводород:

Соединения железа (III) также окисляют сероводород:

H2S + 2FeCl3 → 2FeCl2 + S + 2HCl

Бихроматы, хроматы и прочие окислители также окисляют сероводород до молекулярной серы:

Серная кислота окисляет сероводород либо до молекулярной серы:

4. Сероводород в растворе реагирует с растворимыми солями тяжелых металлов : меди, серебра, свинца, ртути, образуя черные сульфиды, нерастворимые ни в воде, ни в минеральных кислотах.

Например , сероводород реагирует в растворе с нитратом свинца (II). при этом образуется темно-коричневый (почти черный) осадок, нерастворимый ни в воде, ни в минеральных кислотах:

Взаимодействие с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Видеоопыт взаимодействия сероводорода с нитратом свинца можно посмотреть здесь.

Сульфиды

Сульфиды – это бинарные соединения серы и металлов или некоторых неметаллов, соли сероводородной кислоты.

По растворимости в воде и кислотах сульфиды разделяют на растворимые в воде, нерастворимые в воде, но растворимые в минеральных кислотах, нерастворимые ни в воде, ни в минеральных кислотах, гидролизуемые водой.

Способы получения сульфидов

1. Сульфиды получают при взаимодействии серы с металлами . При этом сера проявляет свойства окислителя.

Например , сера взаимодействует с магнием и кальцием:

Сера взаимодействует с натрием:

S + 2Na → Na2S

2. Растворимые сульфиды можно получить при взаимодействии сероводорода и щелочей.

Например , гидроксида калия с сероводородом:

3. Нерастворимые сульфиды получают взаимодействием растворимых сульфидов с солями (любые сульфиды) или взаимодействием сероводорода с солями (только черные сульфиды).

Например , при взаимодействии нитрата меди и сероводорода:

Еще пример : взаимодействие сульфата цинка с сульфидом натрия:

Химические свойства сульфидов

1. Растворимые сульфиды гидролизуются по аниону, среда водных растворов сульфидов щелочная:

K2S + H2O ⇄ KHS + KOH
S 2– + H2O ⇄ HS – + OH –

2. Сульфиды металлов, расположенных в ряду напряжений левее железа (включительно), растворяются в сильных минеральных кислотах .

Например , сульфид кальция растворяется в соляной кислоте:

CaS + 2HCl → CaCl2 + H2S

А сульфид никеля, например , не растворяется:

3. Нерастворимые сульфиды растворяются в концентрированной азотной кислоте или концентрированной серной кислоте . При этом сера окисляется либо до простого вещества, либо до сульфата.

Например , сульфид меди (II) растворяется в горячей концентрированной азотной кислоте:

или горячей концентрированной серной кислоте:

4. Сульфиды проявляют восстановительные свойства и окисляются пероксидом водорода, хлором и другими окислителями.

Например , сульфид свинца (II) окисляется пероксидом водорода до сульфата свинца (II):

Еще пример : сульфид меди (II) окисляется хлором:

СuS + Cl2 → CuCl2 + S

5. Сульфиды горят (обжиг сульфидов). При этом образуются оксиды металла и серы (IV).

Например , сульфид меди (II) окисляется кислородом до оксида меди (II) и оксида серы (IV):

2CuS + 3O2 → 2CuO + 2SO2

Аналогично сульфид хрома (III) и сульфид цинка:

2ZnS + 3O2 → 2SO2 + ZnO

6. Реакции сульфидов с растворимыми солями свинца, серебра, меди используют как качественные на ион S 2− .

Сульфиды свинца, серебра и меди — черные осадки, нерастворимые в воде и минеральных кислотах:

7. Сульфиды трехвалентных металлов (алюминия и хрома) разлагаются водой (необратимый гидролиз).

Например , сульфид алюминия разлагается до гидроксида алюминия и сероводорода:

Разложение происходит и взаимодействии солей трехвалентных металлов с сульфидами щелочных металлов.

Например , сульфид натрия реагирует с хлоридом алюминия в растворе. Но сульфид алюминия не образуется, а сразу же необратимо гидролизуется (разлагается) водой:

Оксиды серы

Растворимые в воде Нерастворимые в воде, но растворимые в минеральных кислотах Нерастворимые ни в воде, ни в минеральных кислотах (только в азотной и серной конц.) Разлагаемые водой, в растворе не существуют
Сульфиды щелочных металлов и аммония Сульфиды прочих металлов, расположенных до железа в ряду активности. Белые и цветные сульфиды (ZnS, MnS, FeS, CdS) Черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS) Сульфиды трехвалентных металлов (алюминия и хрома (III))
Реагируют с минеральными кислотами с образованием сероводорода Не реагируют с минеральными кислотами, сероводород получить напрямую нельзя
Оксиды серы Цвет Фаза Характер оксида
SO2 Оксид сера (IV), сернистый газ бесцветный газ кислотный
SO3 Оксид серы (VI), серный ангидрид бесцветный жидкость кислотный

Оксид серы (IV)

Оксид серы (IV) – это кислотный оксид . Бесцветный газ с резким запахом, хорошо растворимый в воде.

Cпособы получения оксида серы (IV):

1. Сжигание серы на воздухе :

2. Горение сульфидов и сероводорода:

2CuS + 3O2 → 2SO2 + 2CuO

3. Взаимодействие сульфитов с более сильными кислотами:

Например , сульфит натрия взаимодействует с серной кислотой:

4. Обработка концентрированной серной кислотой неактивных металлов.

Например , взаимодействие меди с концентрированной серной кислотой:

Химические свойства оксида серы (IV):

Оксид серы (IV) – это типичный кислотный оксид. За счет серы в степени окисления +4 проявляет свойства окислителя и восстановителя .

1. Как кислотный оксид, сернистый газ реагирует с щелочами и оксидами щелочных и щелочноземельных металлов .

Например , оксид серы (IV) реагирует с гидроксидом натрия. При этом образуется либо кислая соль (при избытке сернистого газа), либо средняя соль (при избытке щелочи):

SO2(изб) + NaOH → NaHSO3

Еще пример : оксид серы (IV) реагирует с основным оксидом натрия:

2. При взаимодействии с водой S O2 образует сернистую кислоту. Реакция обратимая, т.к. сернистая кислота в водном растворе в значительной степени распадается на оксид и воду.

3. Наиболее ярко выражены восстановительные свойства SO2. При взаимодействии с окислителями степень окисления серы повышается.

Например , оксид серы окисляется кислородом на катализаторе в жестких условиях. Реакция также сильно обратимая:

Сернистый ангидрид обесцвечивает бромную воду:

Азотная кислота очень легко окисляет сернистый газ:

Озон также окисляет оксид серы (IV):

Качественная реакция на сернистый газ и на сульфит-ион – обесцвечивание раствора перманганата калия:

Оксид свинца (IV) также окисляет сернистый газ:

4. В присутствии сильных восстановителей SO2 способен проявлять окислительные свойства.

Например , при взаимодействии с сероводородом сернистый газ восстанавливается до молекулярной серы:

Оксид серы (IV) окисляет угарный газ и углерод:

SO2 + 2CO → 2СО2 + S

Оксид серы (VI)

Оксид серы (VI) – это кислотный оксид. При обычных условиях – бесцветная ядовитая жидкость. На воздухе «дымит», сильно поглощает влагу.

Способы получения. Оксид серы (VI) получают каталитическим окислением оксида серы (IV) кислородом.

Сернистый газ окисляют и другие окислители, например , озон или оксид азота (IV):

Еще один способ получения оксида серы (VI) – разложение сульфата железа (III):

Химические свойства оксида серы (VI)

1. Оксид серы (VI) активно поглощает влагу и реагирует с водой с образованием серной кислоты:

2. Серный ангидрид является типичным кислотным оксидом , взаимодействует с щелочами и основными оксидами.

Например , оксид серы (VI) взаимодействует с гидроксидом натрия. При этом образуются средние или кислые соли:

SO3(избыток) + NaOH → NaHSO4

Еще пример : оксид серы (VI) взаимодействует с оксидом оксидом (при сплавлении):

SO3 + MgO → MgSO4

3. Серный ангидрид – очень сильный окислитель , так как сера в нем имеет максимальную степень окисления (+6). Он энергично взаимодействует с такими восстановителями, как иодид калия, сероводород или фосфор:

4. Растворяется в концентрированной серной кислоте, образуя олеум – раствор SO3 в H2SO4.

Серная кислота

Строение молекулы и физические свойства

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества теплоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.

Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.

Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

Аппарат Назначение и уравненяи реакций
Печь для обжига 4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q

Измельченный очищенный пирит сверху засыпают в печь для обжига в «кипящем слое». Снизу (принцип противотока) пропускают воздух, обогащенный кислородом, для более полного обжига пирита. Температура в печи для обжига достигает 800 о С

Циклон Из печи выходит печной газ, который состоит из SO2, кислорода, паров воды и мельчайших частиц оксида железа. Такой печной газ очищают от примесей. Очистку печного газа проводят в два этапа. Первый этап — очистка газа в циклоне. При этом за счет центробежной силы твердые частички ссыпаются вниз.
Электрофильтр Второй этап очистки газа проводится в электрофильтрах. При этом используется электростатическое притяжение, частицы огарка прилипают к наэлектризованным пластинам электрофильтра).
Сушильная башня Осушку печного газа проводят в сушильной башне – снизу вверх поднимается печной газ, а сверху вниз льется концентрированная серная кислота.
Теплообменник Очищенный обжиговый газ перед поступлением в контактный аппарат нагревают за счет теплоты газов, выходящих из контактного аппарата.
Контактный аппарат 2SO2 + O2 ↔ 2SO3 + Q

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  • температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500 о С. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  • давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Как только смесь оксида серы и кислорода достигнет слоев катализатора, начинается процесс окисления SO2 в SO3. Образовавшийся оксид серы SO3 выходит из контактного аппарата и через теплообменник попадает в поглотительную башню.

Поглотительная башня Получение H2SO4 протекает в поглотительной башне.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

Образовавшийся олеум сливают в металлические резервуары и отправляют на склад. Затем олеумом заполняют цистерны, формируют железнодорожные составы и отправляют потребителю.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота .

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4 – ⇄ H + + SO4 2–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , серная кислота взаимодействует с оксидом магния:

Еще пример : при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например , серная кислота взаимодействует с гидрокарбонатом натрия:

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например , хлорида натрия:

4. Т акже серная кислота вступает в обменные реакции с солями .

Например , серная кислота взаимодействует с хлоридом бария:

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например , серная кислота реагирует с железом. При этом образуется сульфат железа (II):

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

Концентрированная серная кислота является сильным окислителем . При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.

Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например , концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

Сернистая кислота

Сернистая кислота H2SO3 это двухосновная кислородсодержащая кислота. При нормальных условиях — неустойчивое вещество, которое распадается на диоксид серы и воду.

Валентность серы в сернистой кислоте равна IV, а степень окисления +4.

Химические свойства

1. Сернистая кислота H2SO3 в водном растворе – двухосновная кислота средней силы. Частично диссоциирует по двум ступеням:

HSO3 – ↔ SO3 2– + H +

2. Сернистая кислота самопроизвольно распадается на диоксид серы и воду:

Соли серной кислоты – сульфаты

Серная кислота образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

1. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

2. Сульфаты таких металлов, как медь Cu, алюминий Al, цинк Zn, хром Cr, железо (II) Fe подвергаются термическому разложению на оксид металла, диоксид серы SO2 и кислород O2;

При разложении сульфата железа (II) в FeSO4 Fe (II) окисляется до Fe (III)

Сульфаты самых тяжелых металлов разлагаются до металла.

3. За счет серы со степенью окисления +6 сульфаты проявляют окислительные свойства и могут взаимодействовать с восстановителями.

Например , сульфат кальция при сплавлении реагирует с углеродом с образованием сульфида кальция и угарного газа:

CaSO4 + 4C → CaS + 4CO

4. Многие средние сульфаты образуют устойчивые кристаллогидраты:

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

Источник статьи: http://chemege.ru/sera/

Серная кислота (H2SO4)

Молекула серной кислоты имеет крестовидную форму:

Физические свойства серной кислоты:

  • плотная маслянистая жидкость без цвета и запаха;
  • плотность 1,83 г/см 3 ;
  • температура плавления 10,3°C;
  • температура кипения 296,2°C;
  • очень гигроскопична, смешивается с водой в любых отношениях;
  • при растворении концентрированной серной кислоты в воде происходит выделение большого кол-ва тепла ( ВАЖНО ! Приливают кислоту в воду! Воду в кислоту приливать нельзя. )

Серная кислота бывает двух видов:

  • разбавленная H2SO4(разб) — водный раствор кислоты, в котором процентное содержание H2SO4 не превышает 70%;
  • концентрированная H2SO4(конц) — водный раствор кислоты, в котором процентное содержание H2SO4 превышает 70%;

Химические свойства H2SO4

Серная кислота полностью диссоциирует в водных растворах в две ступени:

Разбавленная серная кислота проявляет все характерные свойства сильных кислот, вступая в реакции:

  • с основными оксидами:
  • с основаниями:
  • с солями:

В окислительно-восстановительных реакциях серная кислота выступает в роли окислителя, при этом, в разбавленной H2SO4 роль окислителей играют катионы водорода (H + ), а в концентрированной — сульфат-ионы (SO4 2- ) (более сильные окислители, чем катионы водорода).

  • разбавленная серная кислота:
    H2 +1 S +6 O4 -2
    окислитель H + : 2H + +2e — → H2 0 ↑
  • концентрированная серная кислота:
    H2 +1 S +6 O4 -2
    окислитель S +6 :
    • S +6 +2e — → S +4 (SO2)
    • S +6 +6e — → S 0 (S)
    • S +6 +8e — → S -2 (H2S)

Разбавленная серная кислота реагирует с металлами, стоящими в электрохимическом ряду напряжений левее водорода (реакция проходит с образованием сульфатов и выделением водорода):

С металлами, стоящими правее водорода (медь, серебро, ртуть, золото), разбавленная серная кислота не реагирует.

Концентрированная серная кислота является более сильным окислителем, особенно это проявляется при нагревании. Концентрированная серная кислота не реагирует только с золотом, с остальными металлами, стоящими правее водорода, кислота взаимодействует с образованием сульфатов и сернистого газа. Более активными металлами (цинк, алюминий, магний) концентрированная серная кислота восстанавливается до свободной серы или сероводорода.

С остальными металлами серная кислота взаимодействует с образованием сернистого газа, серы или сероводорода (конкретный продукт восстановления серной кислоты зависит от ее концентрации):

Концентрированная серная кислота окисляет некоторые неметаллы, восстанавливаясь до сернистого газа:

При низких температурах концентрированная серная кислота пассивирует некоторые металлы (железо, алюминий, никель, хром, титан), что дает возможность ее промышленной перевозки в железных цистернах.

Получение и применение серной кислоты

Серную кислоту в промышленности получают двумя способами: контактным и нитрозным.

Контактный способ получения H2SO4:

  • На первом этапе получают сернистый газ путем обжига серного колчедана:
  • На втором этапе, сернистый газ окисляют кислородом воздуха до серного ангидрида, реакция идет в присутствии оксида ванадия, играющего роль катализатора:
  • На третьем, последнем этапе, получают олеум, для этого серный ангидрид растворяют в концентрированной серной кислоте:
  • В дальнейшем олеум транспортируется в железных цистернах, а серная кислота получается из олеума разбавлением водой:

Нитрозный способ получения H2SO4:

  • На первом этапе очищенный от пыли сернистый газ обрабатывается серной кислотой, в которой растворена нитроза (оксид азота):
  • Выделившийся оксид азота окисляется кислородом и снова поглощается серной кислотой:

Применение серной кислоты:

  • для осушки газов;
  • в производстве других кислот, солей, щелочей и проч.;
  • для получения удобрений, красителей, моющих средств;
  • в органическом синтезе;
  • в производстве органических веществ.

Соли серной кислоты

Поскольку серная кислота является двухосновной кислотой, она дает два вида солей: средние соли (сульфаты) и кислые соли (гидросульфаты).

Сульфаты хорошо растворяются в воде, исключение составляют CaSO4, PbSO4, BaSO4 — первые два плохо растворяются, а сульфат бария практически нерастворим. Сульфаты, в состав которых входит вода, называются купоросами (медный купорос — CuSO4·5H2O).

Отличительной особенностью солей серной кислоты является их отношение к нагреванию, например, сульфаты натрия, калия, бария устойчивы к нагреванию, не разлагаясь даже при 1000°C, в то же время, сульфаты меди, алюминия, железа разлагаются даже при незначительном нагревании с образованием оксида металла и серного ангидрида: CuSO4 = CuO+SO3.

Горькая (MgSO4·7H2O) и глауберова (Na2SO4·10H2O) соль используются в качестве слабительного средства. Сульфат кальция (CaSO4·2H2O) — при изготовлении гипсовых повязок.

Если вам понравился сайт, будем благодарны за его популяризацию 🙂 Расскажите о нас друзьям на форуме, в блоге, сообществе. Это наша кнопочка:

Источник статьи: http://prosto-o-slognom.ru/chimia/503_sernaya_kislota_H2SO4.html

Сульфат натрия, характеристика, свойства и получение, химические реакции

Сульфат натрия, характеристика, свойства и получение, химические реакции.

Сульфат натрия – неорганическое вещество, имеет химическую формулу Na2SO4.

Краткая характеристика сульфата натрия:

Сульфат натрия – неорганическое вещество белого цвета.

Химическая формула сульфата натрия Na2SO4.

Сульфат натрия – неорганическое химическое соединение, соль серной кислоты и натрия.

Хорошо растворяется в воде . Растворим также в глицерине, метаноле, этаноле. Не растворим в ацетоне.

Безводный Na2SO4 устойчив выше температуры 32,384 °C , ниже этой температуры в присутствии воды образуется кристаллогидрат Na2SO4·10H2O.

Сульфат натрия существует в трех модификациях (α, β и γ). α-модификация сульфата натрия имеет ромбическую сингонию. β-модификация сульфата натрия также имеет ромбическую сингонию. γ-модификация имеет гексагональную сингонию. α-модификация переходит в β-модификацию при температуре 185 С о , β-модификация переходит γ-модификацию при 241 С о .

Сульфат натрия не токсичен, пожаро- и взрывобезопасен. Пылевоздушная смесь сульфата натрия не взрывоопасна.

В земной коре сульфат натрия находится в свободном чистом состоянии, в форме кристаллогидратов, а также в составе двойных солей.

Сульфат натрия в чистом состоянии широко распространён в природе в виде минерала тенардит.

Сульфат натрия образует с водой кристаллогидраты. Их формула Na2SO4·nH2O, где n может быть 1, 7 или 10. Кристаллогидрат Na2SO4·10H2O известен как минерал мирабилит (глауберова соль). Данный десятиводный кристаллогидрат сульфата натрия впервые обнаружен химиком И. Р. Глаубером в составе минеральных вод.

Двойные соли сульфат натрия образует с сульфатами ряда металлов , к которым, к примеру, относятся природные минералы астраханит Na2SO4·MgSO4·4H2O и глауберит Na2SO4·CaSO4.

В пищевой промышленности используется 2 типа сульфата натрия:

– добавка Е514(i) – сульфат натрия (Sodium sulphate) с химической формулой Na2SO4;

– добавка Е514(ii) – гидросульфат натрия (Sodium hydrogen sulphate) с химической формулой NaHSO4.

Физические свойства сульфата натрия:

Наименование параметра: Значение:
Химическая формула Na2SO4
Синонимы и названия иностранном языке sodium sulfate (англ.)

тенардит (рус.)

Тип вещества неорганическое
Внешний вид бесцветные ромбические кристаллы
Цвет бесцветный, белый
Вкус соленый
Запах без запаха
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) твердое вещество
Плотность (состояние вещества – твердое вещество, при 20 °C), кг/м 3 2680
Плотность (состояние вещества – твердое вещество, при 20 °C), г/см 3 2,68
Температура кипения, °C 1429
Температура плавления, °C 884
Гигроскопичность гигроскопичен
Молярная масса, г/моль 142,04
Растворимость в воде (25 o С), г/100 г 27,9

Получение сульфата натрия:

Промышленный способ получения сульфата натрия заключается в разработке его месторождений в природе.

В лаборатории сульфат натрия получается в результате следующих химических реакция:

  1. 1. взаимодействия сульфата магния и карбоната натрия :
  1. 2. взаимодействия оксида натрия и оксида серы:
  1. 3. взаимодействия сульфита натрия и пероксида водорода:
  1. 4. взаимодействия гидросульфата натрия и гидроксида натрия :
  1. 5. взаимодействия сульфата лития и карбоната натрия:
  1. 6. взаимодействия оксида серы и гидроксида натрия:
  1. 7. и иных реакций.

Химические свойства сульфата натрия. Химические реакции сульфата натрия:

Химические свойства сульфата натрия аналогичны свойствам сульфатов других металлов . Сульфат натрия неактивен по отношению к большинству окислителей или восстановителей. Поэтому для него характерны следующие химические реакции:

1. реакция сульфата натрия и углерода:

В результате реакции образуются в первом случае – сульфид натрия и оксид углерода (IV), во втором – сульфид натрия и оксид углерода (II).

2. реакция сульфата натрия и водорода:

В результате реакции образуются сульфид натрия и вода.

3. реакция взаимодействия сульфата натрия и оксида кремния:

В результате реакции образуется силикат натрия и оксид серы.

4. реакция взаимодействия сульфата натрия и оксида серы:

В результате реакции образуется дисульфат натрия.

5. реакция взаимодействия сульфата натрия и оксида бора:

В результате реакции образуются метаборат натрия и оксид серы.

6. реакция взаимодействия сульфата натрия и гидроксида бария :

В результате реакции образуются сульфат бария и гидроксид натрия .

7. реакция взаимодействия сульфата натрия и карбоната бария:

В результате реакции образуются сульфат бария и карбонат натрия.

8. реакция взаимодействия сульфата натрия и хлорида бария:

В результате реакции образуются сульфат бария и хлорид натрия.

9. реакция взаимодействия сульфата натрия и нитрата серебра:

В результате реакции образуются сульфат серебра и нитрат натрия.

10. реакция взаимодействия сульфата натрия и нитрата свинца:

В результате реакции образуются сульфат свинца и нитрат натрия.

11. реакция взаимодействия сульфата натрия и сульфата бериллия:

В результате реакции образуется дисульфатобериллат натрия.

12. реакция взаимодействия сульфата натрия и хромата калия:

В результате реакции образуются хромат натрия и сульфат калия. В ходе реакции используются насыщенные растворы хромата калия и сульфата натрия.

13. реакция взаимодействия сульфата натрия, углерода и карбоната натрия:

В результате реакции образуются сульфид кальция, карбонат натрия и оксид углерода (IV). Данная реакция представляет собой метод добычи соды.

Применение и использование сульфата натрия:

Сульфат натрия используется во множестве отраслей промышленности и для бытовых нужд:

– в медицине и ветеринарии как лекарственное средство (как слабительное);

– в пищевой промышленности в качестве пищевой добавки 514 как регулятор кислотности;

– при производстве синтетических моющих средств, стиральных порошков;

– в стекольном производстве для изготовления стекла ;

– в целлюлозно-бумажной промышленности при получении целлюлозы сульфатным методом;

– в текстильной и кожевенной промышленности;

– в химических лабораториях в качестве обезвоживающего средства;

Примечание: © Фото //www.pexels.com, //pixabay.com

сульфат натрия реагирует кислота 1 2 3 4 5 вода
уравнение реакций соединения масса взаимодействие сульфата натрия
реакции

Источник статьи: http://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/sulfat-natriya-harakteristika-svoystva-i-poluchenie-himicheskie-reaktsii/

Серная кислота. Общая характеристика, получение, химические свойства

Серная кислота, также известная как масло витриола, или купоросное масло представляет собой минеральную кислоту, состоящую из элементов серы, кислорода и водорода, с молекулярной формулой H2SO4.

Она является бесцветной, не имеющей запаха вязкой жидкостью, которая растворима в воде и синтезируется в реакциях, которые являются сильно экзотермическими.

Чистая серная кислота является вязкой прозрачной жидкостью, как масло, и это объясняет старое название кислоты («масло витриола»).

Обладает следующими важными характеристиками:

  • гигроскопичная — легко поглощает водяной пар из воздуха;
  • коррозионная — сильный окислитель и дегидратирующий агент;
  • вызывает ожоги — даже при малых концентрациях способна к образованию химических и вторичных термических ожогов.

Изучение витриола (купороса) — категории стекловидных минералов, из которых может быть получена кислота, началось в древности.

  • Одни из самых ранних дискуссий о происхождении и свойствах витриола — в работах греческого врача Диоскорида (I век нашей эры) и римского натуралиста Плиния Старшего (23-79 годы нашей эры).

Средневековые алхимики исламской эпохи, Джабир ибн Хайян (721 — 815, также известный как Гебер), Рази (865 — 925) и Джамаль Дин аль — Ватват (1318), включили купорос в списки классификации минералов.

  • Ибн Сина (Авиценна) сосредоточился на медицинских применениях и различных разновидностях витриола.

Мухаммад ибн Закарий аль-Рази (854-925) считается первым, кто произвел серную кислоту. Серная кислота была названа «маслом витриола» средневековыми европейскими алхимиками, потому что она была приготовлена обжаркой «зелёного купороса» (сульфата железа (II)) в железной реторте.

  • В XVII веке германо — голландский химик Иоганн Глаубер приготовил серную кислоту, сжигая серу вместе с селитрой (нитрат калия, KNO3), в присутствии пара. По мере разложения солевого раствора он окислял серу до SO3, который объединялся с водой для получения серной кислоты.

В 1736 году лондонский фармацевт Джошуа Уорд использовал этот метод для начала первого крупномасштабного производства серной кислоты.

  • В 1746 году в Бирмингеме Джон Робак применил этот способ для получения H2SO4 в камерах со свинцовой облицовкой, которые были более прочными, менее дорогими и более крупными, чем ранее использовавшиеся стеклянные контейнеры. Этот процесс позволил эффективно индустриализовать производство серной кислоты.

После нескольких уточнений этот способ, называемый процессом в свинцовой камере или «камерный процесс», оставался стандартом для производства серной кислоты в течение почти двух столетий.

В 1831 году британский торговец уксусом Перегрин Филлипс запатентовал «контактный процесс», который был гораздо более экономичным процессом производства серного ангидрида и концентрированной серной кислоты.

Существует несколько способов получения серной кислоты, в частности

  • процесс влажной серной кислоты (метод WSA), мокрый катализ;
  • метод «свинцовой камеры» — первый индустриальный способ получения серной кислоты;
  • «контактный метод» — современный способ получения больших объемов H2SO4.

Концентрированная серная кислота обладает очень мощным дегидратирующим свойством, удаляя воду (H2O) из других химических соединений, включая сахар и другие углеводы, и получая углерод, тепло и пар.

Приготовление разбавленной кислоты может быть опасным из-за тепла, выделяющегося в процессе разбавления.

Вода обладает более высокой теплоемкостью, чем кислота, и поэтому сосуд из холодной воды будет поглощать тепло по мере добавления кислоты.

Поскольку реакция гидратации серной кислоты является очень экзотермической, разбавление всегда должно осуществляться добавлением кислоты к воде, а не воды к кислоте.

Реакция находится в равновесии, которое способствует быстрому протонированию воды, добавление кислоты к воде гарантирует, что кислота является ограничительным реагентом.

Эту реакцию лучше всего рассматривать как образование ионов гидроксония:

Серная кислота способна вызывать сильные ожоги, особенно когда она находится в высоких концентрациях.

  • Она легко разлагает белки и липиды посредством гидролиза амида и сложного эфира при контакте с живыми тканями, такими как кожа и мышцы;
  • проявляет сильное дегидратирующее свойство на углеводах, высвобождая дополнительное тепло и вызывая вторичные термические ожоги;
  • быстро атакует роговицу и может вызвать постоянную слепоту, если плеснуть на глаза;
  • в случае проглатывания она необратимо повреждает внутренние органы и может даже привести к летальному исходу;
  • сильные окислительные свойства делают ее сильно коррозионной по отношению ко многим металлам и могут привести к его разрушению на других материалах.

По этим причинам ущерб, наносимый серной кислотой, потенциально является более серьезным, чем ущерб, наносимый другими сравнительно сильными кислотами, такими как соляная кислота и азотная кислота.

Серная кислота и ее Опасность

Основными профессиональными рисками, создаваемыми этой кислотой, являются контакт с кожей, приводящий к ожогам и вдыхание паров.

  • Воздействие паров в высоких концентрациях приводит к немедленному и сильному раздражению глаз, дыхательных путей и слизистых оболочек: это быстро прекращается после воздействия, хотя существует риск последующего отека легких, если повреждение тканей было более сильным.

При более низких концентрациях наиболее часто сообщаемым симптомом хронического воздействия сернокислотных аэрозолей является эрозия зубов, обнаруженная практически во всех исследованиях.

  • Повторное воздействие сернокислых туманов может повысить вероятность развития рака легких до 64 процентов.

В США допустимый предел воздействия на серную кислоту установлен на уровне 1 мг/м3: пределы в других странах аналогичны. Были сообщения о приеме серной кислоты в пищу, приводящем к дефициту витамина B12 с комбинированной дегенерацией.

  • В таких случаях чаще всего поражается спинной мозг, но зрительные нервы могут демонстрировать демиелинизацию, потерю аксонов и глиозы.

Серная кислота и ее Применение

Производство H2SO4 в стране является хорошим показателем ее промышленной прочности.

Мировое производство в 2004 году составило около 180 миллионов тонн при следующем географическом распределении:

  • Азия — 35%,
  • Северная Америка (включая Мексику) — 24%,
  • Африка 11%, Западная Европа — 10%,
  • Восточная Европа и Россия — 10%,
  • Австралия и Океания — 7%,
  • Южная Америка — 7%.

Большая часть этого количества (≈60%) потребляется на удобрения, в частности на суперфосфаты, фосфат аммония и сульфаты аммония.

Около 20% используется в химической промышленности для производства моющих средств, синтетических смол, красителей, фармацевтических препаратов, нефтяных катализаторов, инсектицидов и антифризов, а также в различных процессах, таких как кислотизация нефтяных скважин, восстановление алюминия, проклеивание бумаги, обработка воды.

Около 6% применений относятся к пигментам и включают краски, эмали, печатные краски, мелованные ткани и бумагу.

Остальное количество ( ≈14% ) применяется в таких отраслях, как производство взрывчатых веществ, целлофана, ацетата и вискозного текстиля, смазочных материалов, цветных металлов и батарей.

Серная кислота и Водоросли

H2SO4 используется в качестве защиты некоторыми морскими видами, например, фаэофит Desmarestia munda (порядок Desmarestiales) концентрирует серную кислоту в клеточных вакуолях.

  • Под воздействием воздуха они выделяют кислоту, тем самым разрушая себя и близлежащие морские водоросли в процессе.

Серная кислота образуется в верхних слоях атмосферы Венеры при фотохимическом воздействии Солнца на диоксид углерода, диоксид серы и водяной пар.

  • Ультрафиолетовые фотоны с длинами волн менее 169 нм могут фотодиссоциировать диоксид углерода на монооксид углерода и атомный кислород.

В верхних, более холодных частях атмосферы Венеры серная кислота существует в виде жидкости, а густые облака серной кислоты полностью затмевают поверхность планеты, если смотреть сверху.

  • Постоянные венерины облака производят концентрированный кислотный дождь, так как облака в атмосфере Земли производят водный дождь.

Инфракрасные спектры, полученные космическим аппаратом NASA Galileo, показывают различные поглощения на спутнике Юпитера Европе, которые приписываются одному или нескольким гидратам серной кислоты.

  • H2SO4 в растворе с водой вызывает значительное снижение температуры плавления воды до 210 К (− 63 С), и это делает более вероятным существование жидких растворов под ледяной коркой Европы.

Трактовка спектров несколько спорна. Некоторые планетологи предпочитают присваивать спектральные особенности сульфатному иону, возможно, как части одного или нескольких минералов на поверхности Европы.

Чистая серная кислота не встречается естественным образом на Земле в безводной форме из-за ее большого сродства к воде.

  • Разбавленная серная кислота является составной частью кислотного дождя, который образуется атмосферным окислением диоксида серы в присутствии воды, то есть окислением сернистой кислоты.

Диоксид серы является основным побочным продуктом, получаемым при сжигании серосодержащих видов топлива, таких как уголь или нефть.

  • Серная кислота образуется путем окисления сульфидных минералов, таких как сульфид железа.
  • В стратосфере, втором слое атмосферы, который обычно находится между 10 и 50 км над поверхностью Земли, серная кислота образуется в результате окисления вулканического диоксида серы гидроксильным радикалом.

Поскольку серная кислота достигает перенасыщения в стратосфере, она может образовать частицы аэрозоля и обеспечить поверхность для роста аэрозоля путем конденсации и коагуляции с другими аэрозолями вода-серная кислота, что приводит к образованию стратосферного аэрозольного слоя.

Таблица 1: Химические свойства серной кислоты

Разбавленная H2SO4

Концентрированная H2SO4

Металлы активные

(Ca, Na, Ba, Zn, Mg)

Металлы средней активности

(Fe, Sn, Cr, Co, Ni, Pb)

Малоактивные металлы

(Hg, Ag, Cu, Bi)

H2SO4 (k.) + Au, Pt ≠ ни при каких условиях

Источник статьи: http://pangenes.ru/post/sernaya-kislota-obshchaya-harakteristika-poluchenie-himicheskie-svoystva.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *