Меню

Как из алкана получить спирт в одну стадию



Как из алкана получить спирт в одну стадию

К наиболее часто используемым химическим способам получения спиртов относятся:

1.Гидратация алкенов (промышленный способ получения этанола для технических целей)

(t, Р, кислая среда (катализатор))

2.Щелочной гидролиз галогеналканов (лабораторный способ получения)

3.Восстановление альдегидов и кетонов (лабораторный способ получения)

Особые способы получения метанола и этанола

1.Получение метанола из синтез-газа (водяной газ, генераторный газ)

(t, Р, оксидные катализаторы)

2.Получение этанола ферментативным брожением глюкозы (получение этилового спирта для пищевых и медицинских целей)

1. Гидратация алкенов

Гидратация алкенов используется в промышленности для получения спиртов из продуктов нефтепереработки.

Присоединение воды к алкенам происходит в присутствии разбавленной серной или фосфорной кислот. Эта реакция протекает в соответствии с правилом Марковникова, поэтому первичный спирт можно получить только из этилена, а остальные алкены дают вторичные или третичные спирты:

Этот метод в лабораторных условиях нашел ограниченную область применения для получения третичных спиртов.

2. Гид­ро­лиз га­ло­ге­нал­ка­нов в вод­но­м рас­тво­ре ще­ло­чи

В лабораторных условиях спирты получают действием водного раствора щелочи на алкилгалогениды при нагревании, при этом атом галогена в галогеналкане замещается группой –ОН:

С помощью этой реакции можно получать первичные, вторичные и третичные спирты.

При действии спиртового раствора щелочи на галогеналканы происходит отщепление галогеноводорода и образование алкена.

3. Восстановление карбонильных соединений (альдегидов и кетонов)

Дегидрирование спиртов по своей химической сущности является окислением. Обратная реакция – гидрирование альдегидов, кетонов и эфиров карбоновых кислот – является, таким образом, их восстановлением.

При действии водорода в присутствии катализаторов (Ni, Pt, Pd) альдегиды восстанавливаются до первичных спиртов, а кетоны – до вторичных спиртов:

4. Восстановление эфиров карбоновых кислот

Гидрирование сложных эфиров проходит через стадию образования альдегидов:

Этим методом в промышленности из метиловых эфиров высших кислот получают высшие первичные спирты, например:

5. Гидролиз сложных эфиров карбоновых кислот в щелочной среде

Гидролиз сложных эфиров карбоновых кислот протекает как в кислой, так и в щелочной среде (водные или спиртовые растворы NaOH, КОН, а также Ba (OH)2, Ca (OH)2, Ba (OH)2, Ca (OH)2). Однако к образованию спиртов приводит гидролиз, протекающий необратимо в щелочной среде:

6. Синтез спиртов из карбонильных соединений с помощью магнийорганических соединений

Спирты образуются при многочисленных реакциях металлоорганических соединений с различными соединениями, содержащими карбонильную группу >С=О. Этим способом можно получать как первичные спирты, так и вторичные и третичные:

7. Окисление алканов

При мягком окислении метана кислородом воздуха в присутствии различных катализаторов образуются метанол, формальдегид или муравьиная кислота:

Специфические способы получения метанола и этанола

Производство метанола крупнотоннажное, т.к. метиловый спирт является исходным веществом для получения других продуктов органического синтеза.

В промышленности

1. Получение метанола из синтез-газа (водяной газ, генераторный газ)

а) Конверсия природного газа в синтез-газ

Его получают из метана с перегретым водяным паром:

б) Каталитический синтез метанола из оксида углерода (II) и водорода

В качестве катализаторов используют смесь оксидов цинка, меди и хрома, температуру поддерживают в интервале 200-300 о С, а давление – от 40 до 150 атм.

Газ на выходе из реактора содержит 3-5% CH3OH, затем газ охлаждают и конденсируют полученный метанол, а оставшийся газ смешивают с исходным газом и направляют снова в реактор.

Ранее метанол получали сухой перегонкой древесины без доступа воздуха (отсюда его название «древесный спирт»).

2. Получение этанола спиртовым брожением глюкозы

Ферментативный гидролиз крахмала – наиболее древний синтетический процесс, используемый человеком – до сих пор имеет огромное значение для получения этилового спирта.

Про­те­ка­ет толь­ко в при­сут­ствии фер­мен­тов, ко­то­рые вы­ра­ба­ты­ва­ют неко­то­рые мик­ро­ор­га­низ­мы, на­при­мер, дрож­жи:

Глю­ко­за со­дер­жит­ся во фрук­то­вых соках. Глю­ко­зу можно по­лу­чить гид­ро­ли­зом крах­ма­ла (зерно, кар­то­фе­ль, цел­лю­лоз­ные опи­лки):

Источник статьи: http://himija-online.ru/organicheskaya-ximiya/spirty/poluchenie-predelnyx-odnoatomnyx-spirtov.html

Способы получения спиртов

1. Из алканов. Метан может быть селективно окислен на гетерогенном катализаторе – серебре расчётным количеством кислорода до метанола:

Алканы с большим числом атомов углерода ,такие, например, как пропан и бутан, окисляются до смеси первичных и вторичных спиртов расчётным количеством кислорода в присутствии катализаторов – солей марганца. Реакция малоселективна – получается довольно большое количество примесей: альдегидов и кетонов с тем же числом атомов углерода, альдегидов и спиртов – продуктов деструкции

2. Из алкенов. К любому алкену можно присоединить воду в присутствии кислот

Присоединение идёт по правилу Марковникова.

3. Из алкинов. Ацетилен и терминальные алкины, реагируя с формальдегидом, другими альдегидами и кетонами, дают соответственно первичные, вторичные и третичные спирты

Реакции были впервые опубликованы в 1905 году А.Е. Фаворским и носят его имя.

4. Из алкадиенов. Алкадиены аналогично алкенам присоединяют в присутствии кислот воду.

Присоединение первого моля воды идёт преимущественно в положения 1 – 4. При

присоединении второго моля воды образуются диолы. Ниже представлены примеры обоих

5. Из галоидных алкилов. Галоидные алкилы вступают с водными растворами щелочей в реакцию нуклеофильного замещения галогена на гидроксил:

6. Из дигалоидных производных. При действии щелочей на дигалоидные производные алканов получаются двухатомные спирты (или диолы):

Как показано выше из 1,2-дибромэтана получается 1,2-этандиол (этиленгликоль). Этот диол очень широко применяется для производства антифризов. Например, в незамерзающей жидкости для охлаждения двигателей внутреннего сгорания – «Тосол-А 40» его 40%.

7. Из тригалоидных производных. Из 1,2,3-трихлорпропана, например, получают широко используемый глицерин (1,2,3-пропантриол).

8. Из аминов. При нагревании с парами воды в присутствии катализатора протекает обратимая реакция, в которой конечными продуктами являются спирт с тем же строением углеродного скелета и аммиак.

Первичные амины можно перевести в спирты так же действием нитрита натрия в соляной кислоте при охлаждении до 2 – 5 о С:

9. Из альдегидов и кетонов по реакции Меервейна – Понндорфа – Верлея. На кетон или альдегид действуют каким-либо спиртом в присутствии катализатора – алкоголята алюминия. В качестве алкоксильных групп берут остатки того же спирта, который взят в качестве реагента. Например, в приведённой ниже реакции вместе с нормальным бутиловым спиртом взят трибутилат алюминия. Реакция обратима и равновесие в ней сдвигают по принципу Ле-Шателье избытком спирта-реагента.

Первые публикации об этой реакции появились практически одновременно в двух разных немецких и одном французском химических журналах в 1925 – 1926 годах. Реакция имеет огромное значение, так как позволяет восстановить карбонильную группу в спиртовую, не восстанавливая двойные связи, нитро- и нитрозогруппы, которые водородом и другими восстановителями переводятся соответственно в простые связи и аминогруппы, например:

Как видно двойная связь, присутствовавшая в кетоне, сохранилась и в полученном спирте. Ниже показано, что при гидрировании кетогруппы одновременно гидрируется и двойная связь.

Аналогичная картина наблюдается и при наличии в кетоне нитрогруппы: в реакции Меервейна –Понндорфа-Верлея она сохраняется, а при гидрировании водородом на катализаторе восстанавливается до аминогруппы:

10. Из альдегидов и кетонов путём гидрированияна катализаторах – металлах платиновой группы: Ni, Pd, Pt :

11. Получение спиртов из альдегидов и кетонов путём синтезов Гриньяра.

Реакции, открытые Франсуа Огюстом Виктором Гриньяром в 1900 – 1920 годах имеют колоссальное значение для синтезов многих классов органических веществ. Так, например, с их помощью можно из любого галоидного алкила и формальдегида в три стадии получить первичный спирт:

Для получения вторичного спирта надо вместо формальдегида взять любой другой альдегид:

При гидролизе такой соли получается спирт с числом атомов углерода равным сумме их в магнийорганическом соединении и в альдегиде:

Для получения третичного спирта вместо альдегида в синтезе используют кетон:

12. Из карбоновых кислот спирты можно получить только в две стадии: на первой из карбоновой кислоты действием пентахлорида фосфора или действием оксиддихлорида серы (IV) получают её хлорангидрид:

На второй стадии, полученный хлорангидрид гидрируют на палладии до спирта:

13. Из алкоголятов спирты очень легко получаются путём гидролиза при комнатной температуре:

Борные эфиры гидролизуются труднее – только при нагревании:

Выпадает в осадок если её больше, чем 4г/100г H2O

14. Из сложных эфиров спирты наряду с карбоновыми кислотами могут быть получены путём автокаталитического, кислотного или щелочного гидролиза. При автокаталитическом процессе в результате очень медленного гидролиза водой появляется слабая карбоновая кислота, которая в дальнейшем ходе реакции играет роль катализатора, заметно ускоряя расход сложного эфира и появление спирта во времени. Например, для реакции втор-бутилового эфира 2-метилпропановой кислоты кинетические кривые, то есть зависимости изменения молярных концентраций во времени представяют собой сигмоиды или S-образные кривые (смотрите график ниже реакции).

15. Если добавить к сложному эфиру сильную кислоту, которая является катализатором, то в

реакции не будет индукционного периода, когда гидролиз почти не идёт (от 0 до 1 времени).

Кинетические кривые в этом случае будут представлять собой экспоненты: нисходящую

для сложного эфира и восходящую для спирта. Процесс называется кислотным гидролизом:

16. Если добавить к сложному эфиру щёлочь (моль на моль или избыток) , то реакция так же описывается экспоненциальными кинетическими кривыми, но в отличие от кислотного гидролиза, где концентрации веществ стремятся к равновесным значениям, здесь конечная концентрация спирта практически равна исходной концентрации эфира. Ниже приведена реакция щелочного гидролиза того же сложного эфира и график с кинетическими кривыми. Как видно щёлочь здесь не катализатор, а реагент, и реакция необратима:

17. Из сложных эфиров спирты можно получить также по Буво и Блану. Этот способ был впервые опубликован авторами в двух разных французских химических журналах в 1903 и 1906 годах и заключается в восстановлении сложных эфиров натрием в спирте, например:

Как видно в реакции получаются два спирта: один из кислотной части сложного эфира и он всегда первичный, второй из спиртовой части и он может быть любым – первичным, вторичным или третичным.

18. Более современный способ получения спиртов из сложных эфиров заключается в восстановлении их комплексными гидридами до алкоголятов (реакция ( 1 ) ), которые затем легко переводятся в спирты путём гидролиза (реакции ( 2а ) и ( 2b ) ), например:

Источник статьи: http://megaobuchalka.ru/6/27193.html

Как из алкана получить спирт в одну стадию

Кислородсодержащие органические соединения

· Карбоновые кислоты, их ангидриды и галогенангидриды

· Фенолы и их простые эфиры.

Спирты

К спиртам относятся соединения, содержащие функциональную группу — OH , связанную с алифатическим радикалом.

аллиловый спирт пропаргиловый спирт метанол

В радикал, соединенный с группой – OH , может входить так же остаток ароматического углеводорода, если он отделён, по крайней мере, одной метиленовой группой.

Классификация спиртов

I. По типу атомов углерода, контактирующих с функциональной группой – OH различают первичные , вторичные и третичные спирты .

Исключение: CH 3— OH (метанол) –он тоже первичный спирт.

II. По количеству гидроксильных групп различают одноатомные, трёхатомные, многоатомные, полиатомные спирты, например :

Номенклатура и изомерия спиртов

По номенклатуре ИЮПАК в структурной формуле спирта находится самая длинная цепь из атомов углерода, обязательно включающая атом углерода, связанный с гидроксильной группой. Эта цепь нумеруется с той стороны, к которой ближе гидроксил. Сначала называются алкильные радикалы с указанием их места положения в цепи, затем название алкана соответствующего длине выбранной цепи, после чего добавляется окончание спиртов – «ол».

По рациональной номенклатуре атом углерода и связанный с ним гидроксил получают название «карбинол». Сначала называются алкильные радикалы, соединённые с упомянутым выше атомом углерода, а затем слитно слово «карбинол». Ниже в таблице приведены названия спиртов с брутто-формулой С5Н12О по этим видам номенклатур, а также тривиальные (то есть исторически сложившиеся) их названия.

Контрольное задание: написать структурные формулы спиртов C 6 H 14 O и дать им названия по номенклатуре ИЮПАК и по рациональной номенклатуре.

Способы получения спиртов

1. Из алканов. Метан может быть селективно окислен на гетерогенном катализаторе – серебре расчётным количеством кислорода до метанола:

Алканы с большим числом атомов углерода ,такие, например, как пропан и бутан, окисляются до смеси первичных и вторичных спиртов расчётным количеством кислорода в присутствии катализаторов – солей марганца. Реакция малоселективна – получается довольно большое количество примесей: альдегидов и кетонов с тем же числом атомов углерода, альдегидов и спиртов – продуктов деструкции

2. Из алкенов . К любому алкену можно присоединить воду в присутствии кислот

Присоединение идёт по правилу Марковникова.

3. Из алкинов. Ацетилен и терминальные алкины, реагируя с формальдегидом, другими альдегидами и кетонами, дают соответственно первичные, вторичные и третичные спирты

Реакции были впервые опубликованы в 1905 году А.Е. Фаворским и носят его имя.

4. Из алкадиенов . Алкадиены аналогично алкенам присоединяют в присутствии кислот воду.

Присоединение первого моля воды идёт преимущественно в положения 1 – 4. При

присоединении второго моля воды образуются диолы. Ниже представлены примеры обоих

5. Из галоидных алкилов. Галоидные алкилы вступают с водными растворами щелочей в реакцию нуклеофильного замещения галогена на гидроксил:

6 . Из дигалоидных производных . При действии щелочей на дигалоидные производные алканов получаются двухатомные спирты (или диолы):

Как показано выше из 1,2-дибромэтана получается 1,2-этандиол (этиленгликоль). Этот диол очень широко применяется для производства антифризов. Например, в незамерзающей жидкости для охлаждения двигателей внутреннего сгорания – «Тосол-А 40» его 40%.

7. Из тригалоидных производных . Из 1,2,3-трихлорпропана, например, получают широко используемый глицерин (1,2,3-пропантриол).

8. Из аминов. При нагревании с парами воды в присутствии катализатора протекает обратимая реакция, в которой конечными продуктами являются спирт с тем же строением углеродного скелета и аммиак.

Первичные амины можно перевести в спирты так же действием нитрита натрия в соляной кислоте при охлаждении до 2 – 5 о С:

9. Из альдегидов и кетонов по реакции Меервейна – Понндорфа – Верлея . На кетон или альдегид действуют каким-либо спиртом в присутствии катализатора – алкоголята алюминия. В качестве алкоксильных групп берут остатки того же спирта, который взят в качестве реагента. Например, в приведённой ниже реакции вместе с нормальным бутиловым спиртом взят трибутилат алюминия. Реакция обратима и равновесие в ней сдвигают по принципу Ле-Шателье избытком спирта-реагента.

Первые публикации об этой реакции появились практически одновременно в двух разных немецких и одном французском химических журналах в 1925 – 1926 годах. Реакция имеет огромное значение, так как позволяет восстановить карбонильную группу в спиртовую, не восстанавливая двойные связи, нитро- и нитрозогруппы, которые водородом и другими восстановителями переводятся соответственно в простые связи и аминогруппы, например:

Как видно двойная связь, присутствовавшая в кетоне, сохранилась и в полученном спирте. Ниже показано, что при гидрировании кетогруппы одновременно гидрируется и двойная связь.

Аналогичная картина наблюдается и при наличии в кетоне нитрогруппы: в реакции Меервейна –Понндорфа-Верлея она сохраняется, а при гидрировании водородом на катализаторе восстанавливается до аминогруппы:

10. Из альдегидов и кетонов путём гидрирования на катализаторах – металлах платиновой группы : Ni , Pd , Pt :

11. Получение спиртов из альдегидов и кетонов путём синтезов Гриньяра.

Реакции, открытые Франсуа Огюстом Виктором Гриньяром в 1900 – 1920 годах имеют колоссальное значение для синтезов многих классов органических веществ. Так, например, с их помощью можно из любого галоидного алкила и формальдегида в три стадии получить первичный спирт:

(1)

Для получения вторичного спирта надо вместо формальдегида взять любой другой альдегид:

При гидролизе такой соли получается спирт с числом атомов углерода равным сумме их в магнийорганическом соединении и в альдегиде:

Для получения третичного спирта вместо альдегида в синтезе используют кетон:

12. Из карбоновых кислот спирты можно получить только в две стадии : на первой из карбоновой кислоты действием пентахлорида фосфора или действием оксиддихлорида серы ( IV ) получают её хлорангидрид:

На второй стадии, полученный хлорангидрид гидрируют на палладии до спирта:

13. Из алкоголятов спирты очень легко получаются путём гидролиза при комнатной температуре:

Борные эфиры гидролизуются труднее – только при нагревании:

Выпадает в осадок если её больше, чем 4г/100г H 2 O

14. Из сложных эфиров спирты наряду с карбоновыми кислотами могут быть получены путём автокаталитического, кислотного или щелочного гидролиза. При автокаталитическом процессе в результате очень медленного гидролиза водой появляется слабая карбоновая кислота, которая в дальнейшем ходе реакции играет роль катализатора, заметно ускоряя расход сложного эфира и появление спирта во времени. Например, для реакции втор-бутилового эфира 2-метилпропановой кислоты кинетические кривые, то есть зависимости изменения молярных концентраций во времени представяют собой сигмоиды или S-образные кривые (смотрите график ниже реакции).

15. Если добавить к сложному эфиру сильную кислоту, которая является катализатором, то в

реакции не будет индукционного периода, когда гидролиз почти не идёт (от 0 до 1 времени).

Кинетические кривые в этом случае будут представлять собой экспоненты: нисходящую

для сложного эфира и восходящую для спирта. Процесс называется кислотным гидролизом:

16. Если добавить к сложному эфиру щёлочь (моль на моль или избыток) , то реакция так же описывается экспоненциальными кинетическими кривыми, но в отличие от кислотного гидролиза, где концентрации веществ стремятся к равновесным значениям, здесь конечная концентрация спирта практически равна исходной концентрации эфира. Ниже приведена реакция щелочного гидролиза того же сложного эфира и график с кинетическими кривыми. Как видно щёлочь здесь не катализатор, а реагент, и реакция необратима:

17. Из сложных эфиров спирты можно получить также по Буво и Блану. Этот способ был впервые опубликован авторами в двух разных французских химических журналах в 1903 и 1906 годах и заключается в восстановлении сложных эфиров натрием в спирте, например:

Как видно в реакции получаются два спирта: один из кислотной части сложного эфира и он всегда первичный, второй из спиртовой части и он может быть любым – первичным, вторичным или третичным.

18. Более современный способ получения спиртов из сложных эфиров заключается в восстановлении их комплексными гидридами до алкоголятов (реакция ( 1 ) ), которые затем легко переводятся в спирты путём гидролиза (реакции ( 2а ) и ( 2b ) ), например:

Физические свойства спиртов

Спирты – бесцветные вещества, поглощающие свет в ближней УФ части спектра 200 max о С, додеканол при 24 о С, а тридеканол-1 уже при 30,6 о С, то есть он твёрдое вещество при комнатной температуре. Среди спиртов разветвлённого строения даже с небольшим числом атомов углерода появляются твёрдые вещества. Так, например, трет-бутиловый спирт плавится при +25,5 о С, тогда как нормальный бутиловый плавится при -89,5 о С, изобутиловый при -108 о С, а втор-бутиловый спирт при -114,7 о С.

Спирты способны образовывать межмолекулярные водородные связи.

Образование межмолекулярных водородных связей приводит к значительному повышению температур кипения спиртов по сравнению с веществами, имеющими тот же радикал, но вместо гидроксильной группы OH – другие атомы или группы.

CH 3 F , CH 3 — Cl , CH 3 — Br – газы при нормальных условиях.

CH 3 — O — CH 3 – газ при комнатной температуре.

Температуры кипения у спиртов–изомеров зависят от строения; у линейных изомеров они самые высокие, у наиболее разветвлённых — самые низкие. Например, у нормального бутилового спирта t кип = 117,7 о С, у изобутилового t кип = 107,9 о С, а у трет-бутилового t кип = 82,8 о С

Спирты – вязкие жидкости. Их вязкость превышает вязкость воды при той же температуре. Метанол, этанол и низшие спирты смешиваются с водой при любой температуре. Начиная со спиртов C 4 , растворимость становится ограниченной. При увеличении длины углеродной цепи растворимость жидких спиртов в воде резко падает.

Растворимость спиртов в алканах и их смесях, например, в октане или керосине, плохая. Они смешиваются в любых соотношениях с низшими кетонами (ацетоном и метилэтилкетоном). Спирты хорошо растворяются, а чаще – смешиваются в любых соотношениях с кетонами, альдегидами, сложными эфирами с близкой молярной массой. Спирты смешиваются в любых соотношениях или очень хорошо растворимы в полярных органических растворителях: формамиде, ТГФ, диоксане, ДМФА, ДМАА, гексаметаполе, ДМСО и др.

Сами спирты – полярные органические растворители. Они очень хорошо растворяют многие органические вещества: фенол, анилин, нитробензол, галогенпроизводные алканов. Хорошо или очень хорошо растворяются в спиртах также многие соли, например, некоторые из перхлоратов ( ClO 4 — ):

Растворимость перхлоратов в этой таблице указана в граммах на 100 грамм растворителя.

И метанол, и этанол хорошо растворяют нитрат серебра ( AgNO 3 ), роданид аммония ( NH 4 NCS ) и другие соли. В глицерине растворяется до 30% буры (Na2B4O7)

Метанол, этанол, пропанол–2 имеют специфический запах водки.

Спирты C 4 – C 5 имеют запах сивушных масел. Высшие спирты (воск) практически не пахнут. Некоторые спирты, содержащие бензольные кольца, могут хорошо пахнуть, например, 2-фенилэтанол

пахнет розой, а 2,6-диметилгептанол-2 имеет тонкий цветочный запах с оттенком аромата земляники.

Химические свойства спиртов

Спирты являются очень слабыми кислотами .Их pKa = 16-18. Однако они гораздо более сильные кислоты, чем ацетилен (рКа= 22) и аммиак (рКа=35). Поэтому легко, при комнатной температуре низшие спирты реагируют с ацетиленидами щелочных металлов и с амидом натрия:

Со щелочами спирты реагируют обратимо. Равновесие сильно смещено в сторону исходных веществ, так как вода значительно более сильная кислота, чем спирты:

В связи с этим при реакциях галогенпроизводных бензола со щелочами, проводимых в спирте, получается больше продукта I , чем II , так как

скорость реакции с метилат –ионом намного выше, чем с гидроксид-ионом, хотя последнего в равновесии больше.

Спирты могут взаимодействовать с очень многими реагентами. Ниже приведены наиболее важные из этих реакций:

Спирты реагируют с активными металлами :

Реакции, приведённые ниже, используются для абсолютирования спиртов, то есть для удаления из них воды путём её химического связывания. К магниевым стружкам приливают

спирт, содержащий около 4% воды, и кипятят, добавляя йод для активации первой реакции:

Полученный этилат магния самопроизвольно реагирует с водой – обычный гидролиз соли слабого основания и слабой кислоты:

С менее активными металлами, такими как Al , Zn , Fe спирты не реагируют .

Спирты могут реагировать с концентрированными галогеноводородными кислотами в присутствии ZnCl 2 (р. Лукаса):

Эти реакции – хороший пример для иллюстрации положения теории А.М.Бутлерова о влиянии строения на химические свойства. Как видно скорость реакции с одним и тем же реагентом в случае третичных спиртов намного выше, чем для вторичных, а те в свою очередь реагируют быстрее первичных.

С кислородсодержащими кислотами спирты реагируют с образованием сложных эфиров этих кислот:

Спирты реагируют с аммиаком . Реакция обратима. Равновесие в ней смещают вправо избытком аммиака в соответствии с принципом Ле-Шателье:

Спирты реагируют с аминами .

При межмолекулярной дегидратации спиртов образуются простые эфиры:

При дегидратировании в газовой фазе на гетерогенном катализаторе – оксиде алюминия равновесие смещают вправо, понижая давление, так как в реакции из одного моля газа получается два ( в соответствии с принципом Ле-Шателье)

При внутримолекулярной дегидратации получаются алкены. В соответствии с правилом Зайцева водород преимущественно отщепляется от менее гидрогенизированного атома углерода из двух соседних с тем атомом углерода, который связан с гидроксилом

Спирты взаимодействуют с непредельными углеводородами:

При реакции спиртов с ацетиленом получаются очень важные для синтеза полимеров виниловые эфиры:

Алкадиены со спиртами так же дают непредельные простые эфиры:

С аренами спирты не реагируют. Они не реагируют также с галогенпроизводными алканов. Однако соли спиртов – алкоголяты реагируют с ними очень легко. В результате реакции получаются простые эфиры (лучший способ получения несимметричных простых эфиров):

Реакция спиртов с альдегидами ( получение полуацеталей).

При реакции спиртов с полуацеталями получаются ацетали:

Полуацетали и ацетали, как правило, обладают хорошим запахом, выделяются из растений и часто служат компонентами парфюмерных композиций .

Реакция спиртов с кетонами аналогична их взаимодействию с полуацеталями, но проходит в более жестких условиях .

Спирты взаимодействуют с альдегидами и кетонами по реакции Меервейна – Понндорфа – Верлея, о которой было подробно рассказано в пункте 9 способов получения спиртов. Здесь приведём другой пример этой реакции:

Спирты взаимодействуют также и с карбоновыми кислотами . При этом обратимо получаются сложные эфиры и вода. Процесс называется реакцией этерификации .

Спирты могут взаимодействовать также со сложными эфирами. Получается новый спирт и новый сложный эфир. Реакция носит характер обратимой , катализируется кислотами и называется реакцией переэтерификации спиртом. Она очень широко применяется в синтезах душистых веществ для парфюмерных композиций.

Спирты могут окисляться в различных условиях до различных продуктов:

б) При окислении паров первичных и вторичных спиртов оксидом меди получаются соответственно альдегиды и кетоны, например:

в) При дегидрировании спиртов на катализаторах платиновой группы первичные спирты окисляются до альдегидов, а вторичные — до кетонов:

При окислении спиртов в жидкой фазе в кислой среде сильными окислителями, такими как перманганат калия, дихромат калия или висмутат натрия первичные спирты окисляются до карбоновых кислот. Вторичные — до кетонов. Например, этанол до уксусной кислоты:

Изопропиловый спирт окисляется до кетона (до пропанона )

Окисление третичных спиртов идет

только при нагревании с разрывом C — C связи. Получается сложная смесь карбоновых кислот, кетонов и углекислый газ:

Если все алкильные радикалы одинаковы, то реакция может быть уравнена. Ниже приведена реакция окисления третичного спирта – триэтилкарбинола висмутатом натрия в среде разбавленной азотной кислоты:

Особенности способов получения и реакционной способности двух- и многоатомных спиртов.

Наряду со способами аналогичными способам получения одноатомных спиртов, двухатомные спирты могут быть получены путём окисления алкенов по Вагнеру, например:

При присоединении воды к эпоксисоединениям так же получаются диолы:

Трёхатомный спирт – глицерин может быть получен, например, по приведённой ниже цепи превращений:

Двух- и многоатомные спирты вступают во все те же реакции, в которые вступают одноатомные спирты, правда реакция может идти ступенчато, например:

При взаимодействии многоатомных спиртов с гидроксидами тяжелых металлов, таких как хром, свинец , висмут и медь в щелочной среде образуются хорошо растворимые в воде комплексные соединения. Медный комплекс ярко окрашен в сине-фиолетовый цвет. Для образования комплексов необходимо, чтобы гидроксильные группы в спиртах находились у соседних атомов углерода.

Незаряженные комплексы такого типа могут из водного раствора переходить в органические растворители , например, в 1,2-дихлорэтан или в хлороформ.

В трёхатомных спиртах, а так же и в спиртах с большим количеством гидроксильных групп, в образовании комплекса участвуют только два стоящих рядом гидроксила. Например, в комплексе из глицерина и катиона меди (II):

ПРИМЕНЕНИЕ И МЕДИКО-БИОЛОГИЧЕСКОЕ

Простейший спирт – метанол очень широко применяется как исходное сырьё в многочисленных органических синтезах. Например, для синтеза формальдегида, метилмеркаптана, метиламина, сложных эфиров многих карбоновых кислот, которые в свою очередь применяются как пластификаторы, растворители, душистые вещества в парфюмерии и компоненты пищевых эссенций. Очень важным является синтез уксусной кислоты из метанола и угарного газа:

Этот способ производства уксусной кислоты вытеснил вредный с позиции экологии способ её синтеза из ацетилена через ацетальдегид по Кучерову, так как в нём получается большое количество ртутьсодержащих сточных вод.

Не менее важным является использование метанола в синтезе метилакрилата из ацетилена , угарного газа и этого спирта:

Метанол используется также как растворитель, антифриз и моторное топливо. Им растворяют пробки, образующиеся из замёрзшего конденсата в газопроводах на крайнем севере.

Метанол чрезвычайно токсичен. 7- 10 мл его достаточно для того, чтобы мужчина с массой тела около 70 кг ослеп. Выпитые по ошибке 25 – 30 мл приводят к летальному исходу. Важно знать, что токсичен не сам метанол, а продукты его окисления под действием ферментов – формальдегид и муравьиная кислота. Поэтому, если занять ферменты окислением гораздо менее опасного для человека этанола (в виде водки, принимаемой постоянно в течение трёх суток), то пациента можно спасти.

В мире производится около 30 миллионов тонн метанола в год.

Этанол применяется в производстве ацетальдегида, хлороформа, диэтилового эфира, этилацетата, уксусной кислоты, дивинила, многих душистых веществ для парфюмерии. Кроме того он применяется как растворитель лакокрасочных материалов, взрывчатых и лекарственных веществ. Этиловый спирт, получаемый путём брожения пищевого сырья, применяется при изготовлении алкогольных напитков, растворения и перекристаллизации лекарственных препаратов. Этанол – наркотик, возбуждающе действующий на организм; его постоянное (важно знать любителям пива) или периодическое, но неумеренное употребление ведёт к алкоголизму – тяжёлой болезни, заканчивающейся циррозом печени и полной деградацией личности. В мире производится около 3 миллионов тонн этанола в год.

Пропанол-1 широко применяется как растворитель для восков, природных и синтетических смол. Как исходное вещество в синтезе лекарственных препаратов, душистых веществ для парфюмерных композиций, сложных эфиров – растворителей лакокрасочных материалов, пестицидов.

Пропанол-2 широко применяется как растворитель ацетатов целлюлозы, этилцеллюлозы, целлофана, эфирных масел, алкалоидов. Как исходное вещество он применяется в синтезах ацетона, изорпопиламина, изопропилацетата , косметических, моющих и лекарственных средств.

Изопропиловый спирт входит в состав жидкостей для размораживания замков и в состав «жидкого ключа», помогающего отворачивать гайки, например, на колёсах автомобилей.

Бутанол-1 применяется как растворитель лакокрасочных материалов, как исходное вещество в синтезе душистых веществ для парфюмерных композиций, пластификаторов для полимерных материалов, гербицидов.

Бутанол-2 применяется как высокооктановый ( ОЧ = 110 ) компонент моторных топлив, как исходное вещество в синтезах. В мире производится около 1 миллиона тонн бутанола-2 в год.

Изобутиловый спирт ( 2-метилпропанол-1 ) применяется как растворитель лакокрасочных материалов и азотнокислых эфиров целлюлозы (взрывчатые вещества, ракетное топливо). Он используется так же в синтезах душистых веществ, пластификаторов для полимеров, гербицидов.

Трет-бутиловый спирт ( 2-метипропанол-2 )в огромных масштабах используется для получения путём дегидратации изобутилена ( 2-метилпропена ), который идёт как мономер для производства полиизобутилена. Последний с малой степенью полимеризации ( 15 – 50 ) служит как присадка к моторным маслам, а с большой (десятки тысяч) как материал для защиты от коррозии аппаратов большого объёма в химической промышленности. Трет-бутиловый спирт используется так же в производстве инициаторов полимеризации.

Высшие спирты ( С6 – С20 ) применяются по-разному в зависимости от длины углеродной цепи. Спирты ( С6 – С8 ) как флотореагенты, как экстрагенты солей Co, V и U, как растворители для синтетических смол, как сырьё в производстве пластификаторов. Спирты ( С10 – С20 ) как компоненты пеногасителей, смазочно-охлаждающих жидкостей, текстильно-вспомогательных веществ, косметических составов. Метакриловые эфиры спиртов ( С7 – С9 ) как депрессорные присадки к моторным топливам и маслам. Натровые и аммонийные соли сернокислых эфиров спиртов ( С10 – С20 ) как синтетические моющие средства, способные стирать в жёсткой и морской воде.

Этиленгликоль ( 1,2-этандиол ) очень широко применяется как компонент антифризов для охлаждения двигателей внутреннего сгорания. Эти антифризы обеспечивают хороший отвод тепла на рабочих режимах двигателя и не замерзают при отрицательных температурах, как вода. Отечественная промышленность выпускает антифризы «Тосол –А 40» и «Тосол –А 60». Первый содержит 40% этиленгликоля и 60% воды и предназначен для работы в средней полосе России, а второй содержит 60% этиленгликоля и 40% воды и используется на крайнем севере. Кроме того этиленгликоль широко применяется в синтезе полиэтилентерефталата, из которого производят волокно лавсан ( за границей терилен, дакрон, ямболен и другие ). Из этиленгликоля получают так же многочисленные сложные эфиры. Например, дибутиловый эфир этиленгликоля используют как реагент для выделения Bi ( III ), Po ( IV ) и U ( IV ) из водных растворов. Этиленгликоль входит так же в состав гидравлических, тормозных и закалочных жидкостей. В мире производится около 20 миллионов тонн этиленгликоля в год.

Глицерин ( 1,2,3-триоксипропан, 1,2,3-пропантриол ) применяется для производства тринитрата 1,2,3-пропантриола, неправильно называемого нитроглицерином. Нитрогглицерин одновременно является взрывчатым веществом и препаратом для снятия сердечных приступов.

Глицерин является сырьём в производстве алкидных смол, акролеина, полиуретанов. Он входит в состав эмульгаторов, моющих средств, антифризов, косметических и парфюмерных препаратов, медицинских мазей и растворов, кремов для обуви. В некоторых алкогольных напитках до 15%

глицерина. Глицерин абсолютно не токсичен. В виде фрагмента он входит в состав всех жиров и некоторых других липидов.

Пентаэритрит (2,2-диметилол-1,3-пропандиол) широко применяется как исходное вещество в синтезе синтетических смазочных масел повышающих моторесурс турбозубчатых агрегатов в 5 – 6 раз. Он является также сырьём в производстве алкидных смол, тетранитропентаэритрита, поверхностно-активных веществ и пластификаторов.

Поливиниловый спирт применяется в производстве волокон для хирургии, как компонент кровезаменяющих составов и некоторых готовых выпускных форм, например, «йодинола», как эмульгатор. В мире производится около 1 миллиона тонн поливинилового спирта в год.

по типу атомов углерода, контактирующих с функциональной группой «ОН»……………………1

Источник статьи: http://www.zinref.ru/000_uchebniki/05599_vinodelie/001_00_00_spirti/000.htm

Способы получения спиртов

Высокий уровень развития науки химии и инновационные технологии позволили применять различные способы получения спиртов. Статистические данные свидетельствуют о росте спроса на производство данных видов органических соединений в промышленных масштабах.

К спиртам относят вещества, химическая формула которых включает гидроксильные группы (ковалентно связанные атомы кислорода и водорода — НО).

В зависимости от количества гидроксилов выделяют:

Одноатомные спирты — получают путем преобразования предельных углеводородов (алканов). Виды одноатомных органических соединений: пропанол 1 и 2; метанол; этанол и другие.

Полиолы (многоатомные спирты), к которым относятся: двухатомные (гликоли). Диол этиленгликоль выделяют из этилена. Триол (глицерин) относится к трёхатомным спиртам.

Классифицируют органические соединения по виду углеводородных радикалов: предельные, непредельные, ароматические.

Различают по месту привязки гидроксильной группы в молекулярной цепи: первичные, вторичные и т. д.

Свойства зависят от всех элементов молекулярного строения в совокупности.

Химические способы получения спиртов

Получают двумя основными способами: химическим (синтетические спирты) и биохимическим (биоспирты).

От метода получения, исходного сырья зависят свойства вещества, его целевое использование в промышленном, пищевом производстве. Для первого вида основным сырьём служит древесина и нефтепродукты. Этанол, полученный из этих продуктов в качестве технического спирта, используют в химическом, промышленном производстве. Он содержит определённое количество вредных примесей.

Применение биохимического способа предполагает использование в качестве исходного сырья продуктов растительного происхождения. Этим способом получают медицинский, пищевой этанол.

Получение спиртов из галогеноуглеводородов

Гидролиз галогенопроизводных происходит на основе реакции нуклеофильного замещения. Реагент на внешнем уровне молекулы имеет неопределённые пары электронов, которые отрываются и перестраивают молекулярную решётку.

Под воздействием паров воды, щелочного раствора (реагента), температуры, галоген замещается гидроксилом, образуется спиртосодержащее органическое соединение.

Щелочной гидролиз галогеноалкенов — промышленный способ получения технического этанола из этилена.

Получение спиртов из алкенов

Алкены — этиленовые углеводороды. К ним относят бутен, этилен, пропилен и т. д. Их молекулярная цепочка включает двойную связь атомов углерода (Н₂С).

Существует два основных способа получения алкенов:

методом крекинга углеводородов (нефти и газа);

В зависимости от вида алкенов, в условиях высокой температуры (ориентировочно 300⁰С), давления (до 70 атмосфер) из водных растворов кислот образуются спирты. В промышленном производстве чаще в качестве реагента выступает ортофосфорная кислота.

Этот способ подходит для производства этилового и вторичных спиртов. К примеру из пропилена получают пропанол 2.

Получение из простых алкенов и спиртов

Спиртосодержащие органические соединения получают в результате реакции гидроборирования. Первичное сырьё (алкены) под воздействием раствора перекиси водорода гидролизуются, получают спирты.

Гидратация — процесс сложный. Он происходит в два этапа:

Сначала алкены вступают в реакцию с дибораном (вещество, включающее водород и бор), образуется вещества под названием «алкибораны».

Промежуточное соединение вступает в реакцию со щелочным раствором перекиси водорода.

Гидроборирование — быстрый и удобный способ получения первичных спиртов. Подобный процесс происходит при нагревании вторичных спиртов, обработки их щелочными растворами перекисью водорода.

Получение спиртов из альдегидов и кетонов

Альдегиды и кетоны — вещества, в составе которых присутствует карбонильная группа (-СНО). У альдегидов –СНО связан с водородом и одним углеводородным радикалом. У кетонов 2 связи – СНО с радикалами.

Восстановление молекулы спирта происходит при нагревании с использованием никелевого катализатора. Реакция восстановления позволяет получать из альдегидов первичные спирты, из кетонов — вторичные.

Получение спиртов из карбоновых кислот и сложных эфиров

Процесс превращения карбоновых кислот, сложных эфиров в спиртоорганические соединения основан на реакции гомологизации. В результате дополнения метиленовых групп к молекулам кислот, эфиров образуются гомолог, спирт. Катализаторами процесса выступают алюмогидрид лития.

Сложный процесс проходит в несколько этапов:

Сначала в эфирную суспензию добавляется карбоновая кислота.

Её разделяют на фракции при помощи кислот, щелочных растворов.

Характерно, что это процесс взаимообратный. Из спиртосодержащих веществ синтезируют карбоновые кислоты, сложные эфирные соединения.

Получение спиртов восстановлением эпоксидов и карбонильных соединений

Оксираны (эпоксиды) или эпоксидные соединения — простые эфиры циклической формы с атомом кислорода.

Под воздействием реагентов литийдиалкилкупратов происходит разрыв кольцевой структуры молекулы, образуются молекулы органических спиртосодержащих соединений.

Получение спиртов с использованием металлорганических соединений

Исходным сырьём для получения служат карбоновые кислоты и их производные, эфиры, кетоны. Металлоорганические соединения кадмия, ртути, алюмний бромид, диалкилкупраты щелочных металлов — они вступают в реакцию с исходными компонентами (метод Гильмана). В качестве растворителя используют чаще хлористый метилен. Реакция происходит при низких температурах.

Получение спиртов окислительными методами

Используется несколько методик преобразования ненасыщенных спиртов с использованием разных реагентов и апротонных растворителей. Последние способны растворять ионные реагенты.

окисление диоксидом марганца + органический растворитель;

с использованием пентана, хлористого метилена;

окислители на основе хрома (6 валентного), марганца (6-7 валентного).

Процент выхода зависит от типа используемого реагента.

Другие способы получения спиртов

Существуют и другой способ — биохимического брожения сырья растительного происхождения. Лучше всего для этих целей подходят продукты с высоким содержанием сахара, клетчатки, крахмала. Под воздействием дрожжей, отдельных видов бактерий, плесневых грибов происходит брожение массы.

В сусле углеводы биомассы разделяются на углекислый газ, воду и этанол. Методом дистилляции выделяют его из перебродившего сусла. После ректификации (очищения), чистота этанола составляет 95-100%. Класс пищевого спирта определяет степень очистки, исходное сырьё для его производства.

Множество способов получения спиртов обусловлено широким спектром спиртосодержащих соединений и их свойствами.

Источник статьи: http://nauka.club/khimiya/sposoby-polucheniya-spirtov.html

ТЕМА 2.
Кислородсодержащие соединения

Наряду с углеводородами СаНв, в состав которых входят атомы двух видов – С и Н, известны кислородсодержащие органические соединения типа СаНвОс. В теме 2 мы рассмотрим кислородсодержащие соединения, различающиеся:
1) числом атомов О в молекуле (один, два или более);
2) кратностью связи углерод–кислород (одинарная С–О или двойная С=О);
3) видом атомов, соединенных с кислородом (С–О–Н и С–О–С).

Источники веществ с разным числом атомов кислорода в молекулах

Урок 16.
Одноатомные предельные спирты

Спиртами называют производные углеводородов общей формулы RОН, где R – углеводородный радикал. Формула спирта получается из формулы соответствующего алкана заменой атома Н на группу ОН: RН RОН.
Вывести химическую формулу спиртов можно иначе, включая атом кислорода О между атомами
С–Н молекулы углеводорода:

RОН, СН3–Н СН3–О–Н.

Гидроксильная группа ОН является функциональной группой спиртов. То есть группа ОН – особенность спиртов, она обусловливает главные физические и химические свойства этих соединений.

Общая формула одноатомных предельных спиртов – СnH2n+1OH.

Названия спиртов получают из названий углеводородов с таким же числом атомов С, как в спирте, добавлением суффикса —ол-. Например:

Название спиртов как производных соответствующих алканов характерно для соединений с линейной цепью. Положение группы ОН в них – при крайнем или при внутреннем атоме
С – указывают цифрой после названия:

Названия спиртов – производных разветвленных углеводородов – составляют обычным образом. Выбирают главную углеродную цепь, которая должна включать атом С, соединенный с группой ОН. Нумеруют атомы С главной цепи таким образом, чтобы углерод с группой ОН получил меньший номер:

Название cоставляют, начиная с цифры, указывающей положение заместителя в главной углеродной цепи: «3-метил…» Затем называют главную цепь: «3-метилбутан. » Наконец добавляют суффикс —ол- (название группы ОН) и цифрой указывают атом углерода, с которым связана группа ОН: «3-метилбутанол-2».
Если заместителей при главной цепи несколько, их перечисляют последовательно, указывая цифрой положение каждого. Повторяющиеся заместители в названии записывают с помощью приставок «ди-», «три-», «тетра-» и т.д. Например:

Изомерия спиртов. Изомеры спиртов имеют одинаковую молекулярную формулу, но разный порядок соединения атомов в молекулах.
Два вида изомерии спиртов:
1) изомерия углеродного скелета;
2) изомерия положения гидроксильной группы в молекуле.
Представим изомеры спирта С5Н11ОН этих двух видов в линейно-уголковой форме записи:

По числу атомов С, связанных со спиртовым (–С–ОН) углеродом, т.е. соседних с ним, спирты называют первичными (один сосед С), вторичными (два С) и третичными (три С-заместителя при углероде –С–ОН). Например:

Задача. Составьте по одному изомеру спиртов молекулярной формулы С6Н13ОН с главной углеродной цепью:

1) Записываем главные углеродные цепи с заданным числом атомов С, оставляя место для атомов Н (их укажем позже):

а) С–С–С–С–С–С; б) С–С–С–С–С; в) С–С–С–С; г) С–С–С.

2) Произвольно выбираем место присоединения группы ОН к главной цепи и при внутренних атомах С указываем углеродные заместители:

В примере г) нет возможности разместить три заместителя СН3– при атоме С-2 главной цепи. У спирта С6Н13ОН нет изомеров с трехуглеродной главной цепью.

3) Расставляем атомы Н при углеродах главной цепи изомеров а)–в), руководствуясь валентностью углерода С(IV), и называем соединения:

1. Подчеркните химические формулы предельных одноатомных спиртов:

СН3ОН, С2Н5ОН, СН2=СНСН2ОН, СНССН2ОН, С3Н7ОН,

2. Назовите следующие спирты:

3. Составьте структурные формулы по названиям спиртов: а) гексанол-3;
б) 2-метилпентанол-2; в) н-октанол; г) 1-фенилпропанол-1; д) 1-циклогексилэтанол.

4. Составьте структурные формулы изомеров спиртов общей формулы С6Н13ОН:
а) первичного; б) вторичного; в) третичного
. Назовите эти спирты.

5. По линейно-уголковым (графическим) формулам соединений запишите их структурные формулы и дайте названия веществам:

Урок 17. Получение спиртов

Низкомолекулярные спирты – метанол СН3ОН, этанол С2Н5ОН, пропанол С3Н7ОН, а также изопропанол (СН3)2СНОН – бесцветные подвижные жидкости со специфическим алкогольным запахом. Высокие температуры кипения: 64,7 °С – СН3ОН, 78 °С – С2Н5ОН, 97 °С – н3Н7ОН и 82 °С – (СН3)2СНОН – обусловлены межмолекулярной водородной связью, существующей в спиртах. Спирты С(1)–С(3) смешиваются с водой (растворяются) в любых соотношениях. Эти спирты, особенно метанол и этанол, наиболее широко используются в промышленности.

1. Метанол синтезируют из водяного газа:

2. Этанол получают гидратацией этилена (присоединением воды к С2Н4):

3. Другой способ получения этаноласбраживание сахаристых веществ под действием дрожжевых ферментов. Процесс спиртового брожения глюкозы (виноградного сахара) имеет вид:

4. Этанол получают из крахмала, а также из древесины (целлюлозы) путем гидролиза до глюкозы и последующего сбраживания в спирт:

5. Высшие спирты получают из галогенпроизводных углеводородов гидролизом под действием водных растворов щелочей:

Гидролиз и гидратация – способы получения спиртов

Задача. Как из пропана получить пропанол-1?

Из пяти предложенных выше способов получения спиртов ни в одном не рассмотрено получение спирта из алкана (пропана и т.п.). Поэтому синтез пропанола-1 из пропана будет включать несколько стадий. По способу 2 спирты получают из алкенов, которые в свою очередь доступны при дегидрировании алканов. Схема процесса следующая:

Другая схема такого же синтеза на одну стадию длиннее, зато ее легче осуществить в лаборатории:

Присоединение воды к пропену на последней стадии протекает по правилу Марковникова и приводит к вторичному спирту – пропанолу-2. В задании требуется получить пропанол-1. Поэтому задача не решена, ищем другой способ.
Способ 5 состоит в гидролизе галогеналканов. Необходимый полупродукт для синтеза пропанола-1 – 1-хлорпропан – получают следующим образом. Хлорирование пропана дает смесь 1- и 2-монохлорпропанов:

Из этой смеси выделяют 1-хлорпропан (например, с помощью газовой хроматографии или за счет разных температур кипения: для 1-хлорпропана tкип = 47 °С, для 2-хлорпропана tкип = 36 °С). Действием на 1-хлорпропан водной щелочью КОН или NaOH синтезируют целевой пропанол-1:

Обратите внимание, что взаимодействие одних и тех же веществ: СН3СН2СН2Сl и КОН – в зависимости от растворителя (спирт С2Н5ОН или вода) приводит к разным продуктам – пропилену
(в спирте) или пропанолу-1 (в воде).

1. Приведите уравнения реакций промышленного синтеза метанола из водяного газа и этанола – гидратацией этилена.

2. Первичные спирты RСН2ОН получают гидролизом первичных алкилгалогенидов RСН2Наl, а вторичные спирты синтезируют гидратацией алкенов. Завершите уравнения реакций:

3. Предложите способы получения спиртов: а) бутанола-1; б) бутанола-2;
в) пентанола-3, исходя из алкенов и алкилгалогенидов.

4. При ферментативном брожении сахаров наряду с этанолом в небольшом количестве образуется смесь первичных спиртов С3–С5сивушное масло. Главный компонент в этой смеси – изопентанол (СН3)2СНСН2СН2ОН, минорные компонентын3Н7ОН, (СН3)2СНСН2ОН и СН3СН2СН(СН3)СН2ОН. Назовите эти «сивушные» спирты по номенклатуре ИЮПАК. Составьте уравнение реакции брожения глюкозы С6Н12О6, в которой бы получались все четыре примесных спирта в мольном соотношении соответственно 2:1:1:1. Введите газ СО2 в правую часть уравнения в количестве 1/3 моль от всех исходных атомов С, а также необходимое количество молекул Н2О.

5. Приведите формулы всех ароматических спиртов состава С8Н10О. (В ароматических спиртах группа ОН удалена от бензольного кольца на один или несколько атомов С:
С6Н5 (СН2)n ОН.)

Ответы на упражнения к теме 2

Урок 16

1. Подчеркнуты химические формулы предельных одноатомных спиртов:

СН3ОН, С2Н5ОН, СН2=СНСН2ОН, СНССН2ОН, С3Н7ОН,

2. Названия спиртов по структурным формулам:

3. Структурные формулы по названиям спиртов:

4. Изомеры и названия спиртов общей формулы С6Н13ОН:

5. Структурные формулы и названия, составленные по графическим схемам соединений:

Источник статьи: http://him.1sept.ru/article.php?ID=200402609

Одноатомные предельные спирты

Спиртами называют производные углеводородов общей формулы RОН, где R – углеводородный радикал. Формула спирта получается из формулы соответствующего алкана заменой атома Н на группу ОН: RН RОН.
Вывести химическую формулу спиртов можно иначе, включая атом кислорода О между атомами
С–Н молекулы углеводорода:

RОН, СН3–Н СН3–О–Н.

Гидроксильная группа ОН является функциональной группой спиртов. То есть группа ОН – особенность спиртов, она обусловливает главные физические и химические свойства этих соединений.

Общая формула одноатомных предельных спиртов – СnH2n+1OH.

Названия спиртов получают из названий углеводородов с таким же числом атомов С, как в спирте, добавлением суффикса —ол-. Например:

Название спиртов как производных соответствующих алканов характерно для соединений с линейной цепью. Положение группы ОН в них – при крайнем или при внутреннем атоме
С – указывают цифрой после названия:

Названия спиртов – производных разветвленных углеводородов – составляют обычным образом. Выбирают главную углеродную цепь, которая должна включать атом С, соединенный с группой ОН. Нумеруют атомы С главной цепи таким образом, чтобы углерод с группой ОН получил меньший номер:

Название cоставляют, начиная с цифры, указывающей положение заместителя в главной углеродной цепи: «3-метил…» Затем называют главную цепь: «3-метилбутан. » Наконец добавляют суффикс —ол-(название группы ОН) и цифрой указывают атом углерода, с которым связана группа ОН: «3-метилбутанол-2».
Если заместителей при главной цепи несколько, их перечисляют последовательно, указывая цифрой положение каждого. Повторяющиеся заместители в названии записывают с помощью приставок «ди-», «три-», «тетра-» и т.д. Например:

Изомерия спиртов. Изомеры спиртов имеют одинаковую молекулярную формулу, но разный порядок соединения атомов в молекулах.
Два вида изомерии спиртов:
1) изомерия углеродного скелета;
2) изомерия положения гидроксильной группы в молекуле.
Представим изомеры спирта С5Н11ОН этих двух видов в линейно-уголковой форме записи:

По числу атомов С, связанных со спиртовым (–С–ОН) углеродом, т.е. соседних с ним, спирты называют первичными (один сосед С), вторичными (два С) и третичными (три С-заместителя при углероде –С–ОН). Например:

Задача. Составьте по одному изомеру спиртов молекулярной формулы С6Н13ОН с главной углеродной цепью:

1) Записываем главные углеродные цепи с заданным числом атомов С, оставляя место для атомов Н (их укажем позже):

а) С–С–С–С–С–С; б) С–С–С–С–С; в) С–С–С–С; г) С–С–С.

2) Произвольно выбираем место присоединения группы ОН к главной цепи и при внутренних атомах С указываем углеродные заместители:

В примере г) нет возможности разместить три заместителя СН3– при атоме С-2 главной цепи. У спирта С6Н13ОН нет изомеров с трехуглеродной главной цепью.

3) Расставляем атомы Н при углеродах главной цепи изомеров а)–в), руководствуясь валентностью углерода С(IV), и называем соединения:

1. Подчеркните химические формулы предельных одноатомных спиртов:

СН3ОН, С2Н5ОН, СН2=СНСН2ОН, СНССН2ОН, С3Н7ОН,

2. Назовите следующие спирты:

3. Составьте структурные формулы по названиям спиртов: а) гексанол-3;
б) 2-метилпентанол-2; в) н-октанол; г) 1-фенилпропанол-1; д) 1-циклогексилэтанол.

4. Составьте структурные формулы изомеров спиртов общей формулы С6Н13ОН:
а) первичного; б) вторичного; в) третичного
. Назовите эти спирты.

5. По линейно-уголковым (графическим) формулам соединений запишите их структурные формулы и дайте названия веществам:

Получение спиртов

Низкомолекулярные спирты – метанол СН3ОН, этанол С2Н5ОН, пропанол С3Н7ОН, а также изопропанол (СН3)2СНОН – бесцветные подвижные жидкости со специфическим алкогольным запахом. Высокие температуры кипения: 64,7 °С – СН3ОН, 78 °С – С2Н5ОН, 97 °С – н3Н7ОН и 82 °С – (СН3)2СНОН – обусловлены межмолекулярной водородной связью, существующей в спиртах. Спирты С(1)–С(3) смешиваются с водой (растворяются) в любых соотношениях. Эти спирты, особенно метанол и этанол, наиболее широко используются в промышленности.

1. Метанол синтезируют из водяного газа:

2. Этанол получают гидратацией этилена (присоединением воды к С2Н4):

3. Другой способ получения этаноласбраживание сахаристых веществ под действием дрожжевых ферментов. Процесс спиртового брожения глюкозы (виноградного сахара) имеет вид:

4. Этанол получают из крахмала, а также из древесины (целлюлозы) путем гидролиза до глюкозы ипоследующего сбраживания в спирт:

5. Высшие спирты получают из галогенпроизводных углеводородов гидролизом под действием водных растворов щелочей:

Гидролиз и гидратация – способы получения спиртов

Задача. Как из пропана получить пропанол-1?

Из пяти предложенных выше способов получения спиртов ни в одном не рассмотрено получение спирта из алкана (пропана и т.п.). Поэтому синтез пропанола-1 из пропана будет включать несколько стадий. По способу 2 спирты получают из алкенов, которые в свою очередь доступны при дегидрировании алканов. Схема процесса следующая:

Другая схема такого же синтеза на одну стадию длиннее, зато ее легче осуществить в лаборатории:

Присоединение воды к пропену на последней стадии протекает по правилу Марковникова и приводит к вторичному спирту – пропанолу-2. В задании требуется получить пропанол-1. Поэтому задача не решена, ищем другой способ.
Способ 5 состоит в гидролизе галогеналканов. Необходимый полупродукт для синтеза пропанола-1 – 1-хлорпропан – получают следующим образом. Хлорирование пропана дает смесь 1- и 2-монохлорпропанов:

Из этой смеси выделяют 1-хлорпропан (например, с помощью газовой хроматографии или за счет разных температур кипения: для 1-хлорпропана tкип = 47 °С, для 2-хлорпропана tкип = 36 °С). Действием на 1-хлорпропан водной щелочью КОН или NaOH синтезируют целевой пропанол-1:

Обратите внимание, что взаимодействие одних и тех же веществ: СН3СН2СН2Сl и КОН – в зависимости от растворителя (спирт С2Н5ОН или вода) приводит к разным продуктам – пропилену
(в спирте) или пропанолу-1 (в воде).

1. Приведите уравнения реакций промышленного синтеза метанола из водяного газа и этанола – гидратацией этилена.

2. Первичные спирты RСН2ОН получают гидролизом первичных алкилгалогенидов RСН2Наl, а вторичные спирты синтезируют гидратацией алкенов. Завершите уравнения реакций:

3. Предложите способы получения спиртов: а) бутанола-1; б) бутанола-2;
в) пентанола-3, исходя из алкенов и алкилгалогенидов.

4. При ферментативном брожении сахаров наряду с этанолом в небольшом количестве образуется смесь первичных спиртов С3–С5сивушное масло. Главный компонент в этой смеси – изопентанол (СН3)2СНСН2СН2ОН, минорные компонентын3Н7ОН, (СН3)2СНСН2ОН и СН3СН2СН(СН3)СН2ОН. Назовите эти «сивушные» спирты по номенклатуре ИЮПАК. Составьте уравнение реакции брожения глюкозы С6Н12О6, в которой бы получались все четыре примесных спирта в мольном соотношении соответственно 2:1:1:1. Введите газ СО2 в правую часть уравнения в количестве 1/3 моль от всех исходных атомов С, а также необходимое количество молекул Н2О.

5. Приведите формулы всех ароматических спиртов состава С8Н10О. (В ароматических спиртах группа ОН удалена от бензольного кольца на один или несколько атомов С:
С6Н5 (СН2)n ОН.)

Источник статьи: http://www.sites.google.com/site/himiaprostodostupnonagladno/ma/10-klass/spirty

ТЕМА 2.
Кислородсодержащие соединения

Наряду с углеводородами СаНв, в состав которых входят атомы двух видов – С и Н, известны кислородсодержащие органические соединения типа СаНвОс. В теме 2 мы рассмотрим кислородсодержащие соединения, различающиеся:
1) числом атомов О в молекуле (один, два или более);
2) кратностью связи углерод–кислород (одинарная С–О или двойная С=О);
3) видом атомов, соединенных с кислородом (С–О–Н и С–О–С).

Источники веществ с разным числом атомов кислорода в молекулах

Урок 16.
Одноатомные предельные спирты

Спиртами называют производные углеводородов общей формулы RОН, где R – углеводородный радикал. Формула спирта получается из формулы соответствующего алкана заменой атома Н на группу ОН: RН RОН.
Вывести химическую формулу спиртов можно иначе, включая атом кислорода О между атомами
С–Н молекулы углеводорода:

RОН, СН3–Н СН3–О–Н.

Гидроксильная группа ОН является функциональной группой спиртов. То есть группа ОН – особенность спиртов, она обусловливает главные физические и химические свойства этих соединений.

Общая формула одноатомных предельных спиртов – СnH2n+1OH.

Названия спиртов получают из названий углеводородов с таким же числом атомов С, как в спирте, добавлением суффикса —ол-. Например:

Название спиртов как производных соответствующих алканов характерно для соединений с линейной цепью. Положение группы ОН в них – при крайнем или при внутреннем атоме
С – указывают цифрой после названия:

Названия спиртов – производных разветвленных углеводородов – составляют обычным образом. Выбирают главную углеродную цепь, которая должна включать атом С, соединенный с группой ОН. Нумеруют атомы С главной цепи таким образом, чтобы углерод с группой ОН получил меньший номер:

Название cоставляют, начиная с цифры, указывающей положение заместителя в главной углеродной цепи: «3-метил…» Затем называют главную цепь: «3-метилбутан. » Наконец добавляют суффикс —ол- (название группы ОН) и цифрой указывают атом углерода, с которым связана группа ОН: «3-метилбутанол-2».
Если заместителей при главной цепи несколько, их перечисляют последовательно, указывая цифрой положение каждого. Повторяющиеся заместители в названии записывают с помощью приставок «ди-», «три-», «тетра-» и т.д. Например:

Изомерия спиртов. Изомеры спиртов имеют одинаковую молекулярную формулу, но разный порядок соединения атомов в молекулах.
Два вида изомерии спиртов:
1) изомерия углеродного скелета;
2) изомерия положения гидроксильной группы в молекуле.
Представим изомеры спирта С5Н11ОН этих двух видов в линейно-уголковой форме записи:

По числу атомов С, связанных со спиртовым (–С–ОН) углеродом, т.е. соседних с ним, спирты называют первичными (один сосед С), вторичными (два С) и третичными (три С-заместителя при углероде –С–ОН). Например:

Задача. Составьте по одному изомеру спиртов молекулярной формулы С6Н13ОН с главной углеродной цепью:

1) Записываем главные углеродные цепи с заданным числом атомов С, оставляя место для атомов Н (их укажем позже):

а) С–С–С–С–С–С; б) С–С–С–С–С; в) С–С–С–С; г) С–С–С.

2) Произвольно выбираем место присоединения группы ОН к главной цепи и при внутренних атомах С указываем углеродные заместители:

В примере г) нет возможности разместить три заместителя СН3– при атоме С-2 главной цепи. У спирта С6Н13ОН нет изомеров с трехуглеродной главной цепью.

3) Расставляем атомы Н при углеродах главной цепи изомеров а)–в), руководствуясь валентностью углерода С(IV), и называем соединения:

1. Подчеркните химические формулы предельных одноатомных спиртов:

СН3ОН, С2Н5ОН, СН2=СНСН2ОН, СНССН2ОН, С3Н7ОН,

2. Назовите следующие спирты:

3. Составьте структурные формулы по названиям спиртов: а) гексанол-3;
б) 2-метилпентанол-2; в) н-октанол; г) 1-фенилпропанол-1; д) 1-циклогексилэтанол.

4. Составьте структурные формулы изомеров спиртов общей формулы С6Н13ОН:
а) первичного; б) вторичного; в) третичного
. Назовите эти спирты.

5. По линейно-уголковым (графическим) формулам соединений запишите их структурные формулы и дайте названия веществам:

Урок 17. Получение спиртов

Низкомолекулярные спирты – метанол СН3ОН, этанол С2Н5ОН, пропанол С3Н7ОН, а также изопропанол (СН3)2СНОН – бесцветные подвижные жидкости со специфическим алкогольным запахом. Высокие температуры кипения: 64,7 °С – СН3ОН, 78 °С – С2Н5ОН, 97 °С – н3Н7ОН и 82 °С – (СН3)2СНОН – обусловлены межмолекулярной водородной связью, существующей в спиртах. Спирты С(1)–С(3) смешиваются с водой (растворяются) в любых соотношениях. Эти спирты, особенно метанол и этанол, наиболее широко используются в промышленности.

1. Метанол синтезируют из водяного газа:

2. Этанол получают гидратацией этилена (присоединением воды к С2Н4):

3. Другой способ получения этаноласбраживание сахаристых веществ под действием дрожжевых ферментов. Процесс спиртового брожения глюкозы (виноградного сахара) имеет вид:

4. Этанол получают из крахмала, а также из древесины (целлюлозы) путем гидролиза до глюкозы и последующего сбраживания в спирт:

5. Высшие спирты получают из галогенпроизводных углеводородов гидролизом под действием водных растворов щелочей:

Гидролиз и гидратация – способы получения спиртов

Задача. Как из пропана получить пропанол-1?

Из пяти предложенных выше способов получения спиртов ни в одном не рассмотрено получение спирта из алкана (пропана и т.п.). Поэтому синтез пропанола-1 из пропана будет включать несколько стадий. По способу 2 спирты получают из алкенов, которые в свою очередь доступны при дегидрировании алканов. Схема процесса следующая:

Другая схема такого же синтеза на одну стадию длиннее, зато ее легче осуществить в лаборатории:

Присоединение воды к пропену на последней стадии протекает по правилу Марковникова и приводит к вторичному спирту – пропанолу-2. В задании требуется получить пропанол-1. Поэтому задача не решена, ищем другой способ.
Способ 5 состоит в гидролизе галогеналканов. Необходимый полупродукт для синтеза пропанола-1 – 1-хлорпропан – получают следующим образом. Хлорирование пропана дает смесь 1- и 2-монохлорпропанов:

Из этой смеси выделяют 1-хлорпропан (например, с помощью газовой хроматографии или за счет разных температур кипения: для 1-хлорпропана tкип = 47 °С, для 2-хлорпропана tкип = 36 °С). Действием на 1-хлорпропан водной щелочью КОН или NaOH синтезируют целевой пропанол-1:

Обратите внимание, что взаимодействие одних и тех же веществ: СН3СН2СН2Сl и КОН – в зависимости от растворителя (спирт С2Н5ОН или вода) приводит к разным продуктам – пропилену
(в спирте) или пропанолу-1 (в воде).

1. Приведите уравнения реакций промышленного синтеза метанола из водяного газа и этанола – гидратацией этилена.

2. Первичные спирты RСН2ОН получают гидролизом первичных алкилгалогенидов RСН2Наl, а вторичные спирты синтезируют гидратацией алкенов. Завершите уравнения реакций:

3. Предложите способы получения спиртов: а) бутанола-1; б) бутанола-2;
в) пентанола-3, исходя из алкенов и алкилгалогенидов.

4. При ферментативном брожении сахаров наряду с этанолом в небольшом количестве образуется смесь первичных спиртов С3–С5сивушное масло. Главный компонент в этой смеси – изопентанол (СН3)2СНСН2СН2ОН, минорные компонентын3Н7ОН, (СН3)2СНСН2ОН и СН3СН2СН(СН3)СН2ОН. Назовите эти «сивушные» спирты по номенклатуре ИЮПАК. Составьте уравнение реакции брожения глюкозы С6Н12О6, в которой бы получались все четыре примесных спирта в мольном соотношении соответственно 2:1:1:1. Введите газ СО2 в правую часть уравнения в количестве 1/3 моль от всех исходных атомов С, а также необходимое количество молекул Н2О.

5. Приведите формулы всех ароматических спиртов состава С8Н10О. (В ароматических спиртах группа ОН удалена от бензольного кольца на один или несколько атомов С:
С6Н5 (СН2)n ОН.)

Ответы на упражнения к теме 2

Урок 16

1. Подчеркнуты химические формулы предельных одноатомных спиртов:

СН3ОН, С2Н5ОН, СН2=СНСН2ОН, СНССН2ОН, С3Н7ОН,

2. Названия спиртов по структурным формулам:

3. Структурные формулы по названиям спиртов:

4. Изомеры и названия спиртов общей формулы С6Н13ОН:

5. Структурные формулы и названия, составленные по графическим схемам соединений:

Источник статьи: http://him.1sept.ru/2004/26/24.htm

Спирты в химии — свойства, формула, получение, номенклатура и определение с примерами

Углеводороды образуют различные функциональные производные при замещении в молекуле одного или нескольких атомов водорода на функциональную группу

Спирты и фенолы относятся к монофункциональным гидроксилпроизвод-ным углеводородов.

Спиртами называют производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксильную группу —ОН.

Классификация спиртов

В зависимости от числа гидроксильных групп в молекуле спирты подразделяют на одноатомные, двухатомные, трехатомные, четырехатомные и т. д. (рис. 42). Например:

  • — трехатомный спирт.

Спирты, содержащие несколько гидроксильных групп, объединяют общим названием многоатомные спирты.

В зависимости от строения углеродного скелета различают спирты насыщенные, ненасыщенные, ароматические (рис. 43).

Насыщенные спирты — производные алканов, например Ненасыщенные спирты — производные ненасыщенных углеводородов, в молекулах которых содержатся кратные (двойные и тройные) связи между атомами углерода, например

Некоторые одноатомные ненасыщенные спирты, содержащиеся в винограде, из которого производят вина, определяют характерный аромат ряда мускатных вин и рислингов. В процессе старения этих вин одноатомные спирты превращаются в двухатомные. По концентрации образовавшегося двухатомного спирта можно судить о степени старения вина.

К ароматическим относят спирты, содержащие в молекуле бензольное кольцо и гидроксильную группу, которые связаны друг с другом через атом углерода, например:

Если в молекулах органических соединений гидроксильные группы связаны непосредственно с атомом углерода бензольного кольца, например:

то такие соединения относят к другому классу органических соединений фенолам.

В лепестках розы (рис. 44) содержится ароматический фенилэтиловый спирт, формула которого Он является одним из основных компонентов розового масла и применяется в парфюмерии.

В зависимости от типа атома углерода, с которым связана гидроксильная группа, спирты классифицируют как первичные, вторичные, третичные.

Гидроксильная группа в молекулах первичных спиртов связана с первичным атомом углерода, в молекулах вторичных спиртов — с вторичным атомом углерода и в молекулах третичных спиртов — с третичным атомом углерода. Например:


Спирты — производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на гидроксильную группу —ОН.

Спирты различают по числу гидроксильных групп (атомность спиртов), строению углеродного скелета, типу атома углерода, связанного с гидроксильной группой.

Насыщенные одноатомные спирты

Строение: Насыщенными одноатомными спиртами называют производные алканов, в молекулах которых один атом водорода замещен на гидроксильную группу и содержатся только -связи.

В органической химии известно большое число насыщенных одноатомных спиртов, химический состав и строение которых выражается общей формулой В общем виде формула насыщенных одноатомных спиртов записывается где R — алкильная группа.

— общая формула, отражающая молекулярный состав насыщенных одноатомных спиртов.

Простейшим представителем данного класса спиртов является метанол молекулярная, структурная и электронная формулы которого:

Шаростержневая и масштабная модели молекулы метанола представлены на рисунке 45.

Так как электронное строение алканов и соответствующих им алкильных групп вами уже изучено, то при изучении спиртов — производных алканов — будет рассматриваться только электронное строение функциональной группы спиртов Именно эта группа определяет важнейшие химические и физические свойства спиртов.

В состав функциональной группы спиртов входит атом кислорода, который обладает большой электроотрицательностью и в силу этого оттягивает к себе электронную плотность -связей связанных с ним атомов водорода и углерода: По этой причине атом кислорода приобретает частичный отрицательный заряд, а атомы водорода и углерода — частичные положительные заряды: Связи полярны. Валентный угол СОН близок к 110°.

Номенклатура: По правилам номенклатуры ИЮПАК, названия насыщенных одноатомных спиртов образуются от названий соответствующих алканов с добавлением суффикса -ол. Например, — метанол, — этанол.

Систематическая номенклатура допускает употребление названий, связанных с названием алкильных групп, для низших членов ряда. Например, — метиловый спирт, — этиловый спирт.

В таблице 22 приведены названия первых десяти представителей гомологического ряда спиртов, у которых функциональная группа —ОН находится у первичного атома углерода, по номенклатуре ИЮПАК и тривиальные.

При названии спиртов с неразветвленной углеродной цепью, начиная с пропанола, цифрой указывается атом углерода, с которым связана гидроксильная группа. Нумерация углеродных атомов начинается с того конца, ближе к которому расположена гидроксильная группа. Названия спиртов образуют, добавляя суффикс -ол к названию соответствующего алкана, цифрой указывается положение гидроксильной группы в цепи. Например:

Для названий спиртов с разветвленной углеродной цепью выбирают самую длинную цепь, содержащую функциональную гидроксильную группу, и нумеруют с того конца, ближе к которому расположена гидроксильная группа. Названия спиртов образуют, добавляя суффикс -ол к назанию алкана, соответствующего самой длинной цепи, цифрой указываются атомы углерода, с которыми связана гидроксильная группа и заместители. Названия заместителей перечисляются в алфавитном порядке. Например:

Изомерия: Для насыщенных одноатомных спиртов характерна структурная изомерия. Структурная изомерия спиртов обусловлена изомерией углеродного скелета и изомерией положения гидроксильной группы. Первые два члена гомологического ряда — метанол и этанол — не имеют изомеров спиртов. Начиная с пропанола, число структурных изомеров в гомологическом ряду спиртов быстро возрастает. Например, бутанолы существуют в виде четырех изомеров, гептанолы — восьми, а деканолы — пятисот семидесяти шести.

Рассмотрим примеры изомеров спиртов состава В зависимости от строения углеродного скелета изомерами будут два спирта — производные бутана и 2-метилпропана:

В зависимости от положения гидроксильной группы при том и другом углеродном скелете возможны еще два изомерных спирта:

Общее число структурных изомеров спиртов состава (за исключением стереоизомеров) равно четырем.

Физические свойства: Первые представители класса насыщенных одноатомных спиртов при комнатной температуре — жидкости. Высшие спирты (начиная с ) при комнатной температуре — твердые вещества. Следовательно, среди спиртов данного класса при нормальных условиях отсутствуют газообразные вещества.

Низшие спирты обладают характерным алкогольным запахом, запах спиртов, стоящих в середине гомологического ряда, сильный и часто неприятный, а высшие спирты (более ) практически не имеют запаха.

Низшие спирты () смешиваются с водой в любых соотношениях, средние — ограниченно. Следовательно, с увеличением относительной молекулярной массы растворимость спиртов в воде падает. В большинстве же органических растворителей все спирты растворимы.

Спирты обладают аномально высокими температурами кипения по сравнению с представителями алканов с приблизительно такой же относительной молекулярной массой. Например, температура кипения этанола 78,3 °С, а пропана -42,2 °С. В таблице 23 приводятся температуры кипения, плавления и агрегатное состояние некоторых спиртов.

Причиной отсутствия газообразных спиртов при нормальных условиях, а также более высоких температур кипения спиртов по сравнению с алканами с одинаковой относительной молекулярной массой являются межмолекулярные водородные связи, характерные для спиртов. Как отмечалось, связь в молекуле спирта сильно поляризована: На атоме водорода возникает частичный положительный заряд. В силу этого такой атом водорода может притягиваться неподеленной парой электронов атома кислорода другой молекулы спирта. Между молекулами спирта возникает межмолекулярная водородная связь. Таким образом, молекулы спиртов находятся в ассоциированном состоянии, как бы с увеличенной относительной молекулярной массой. Несмотря на то что энергии межмолекулярных водородных связей спиртов невелики, водородные связи обусловливают значительную ассоциацию молекул спиртов, что и ведет к росту теплоты испарения, а следовательно, и температуры кипения. Графически водородную связь принято обозначать тремя точками. Схема образования водородной связи между молекулами спирта показана на рисунке 46, а.

Образованием межмолекулярных водородных связей между молекулами спиртов и полярными молекулами воды (рис. 46, б) объясняется хорошая растворимость низших спиртов, в отличие от углеводородов, которые из-за малой полярности связей С—Н не образуют с водой водородных связей. С увеличением длины цепи алкильных групп растворимость спиртов понижается, и октанол уже не смешивается с водой.

Насыщенными одноатомными спиртами называют производные алканов, в молекулах которых один атом водорода замещен на гидроксильную группу.

Общая формула насыщенных одноатомных спиртов

Структурная изомерия спиртов обусловлена строением углеродного скелета и различным положением гидроксильной группы при одинаковой углеродной цепи.

На физические свойства спиртов большое влияние оказывает водородная связь между молекулами спиртов или молекулами спиртов и воды в их растворах.

Химические свойства спиртов

Характерные реакции спиртов определяются наличием в составе их молекул гидроксильиой группы, атом кислорода которой смещает электронную плотность как от атома водорода, так и от атома углерода. Такая поляризация может способствовать разрыву связей . Атом водорода в гидроксильной группе за счет сильной поляризации связи становится более подвижным, способным отщепляться в виде протона. В этом случае спирты проявляют кислотные свойства. В то же время наличие в молекуле спирта атома кислорода, имеющего две неподеленные пары электронов, обусловливает проявление спиртами свойств оснований. Следовательно, спирты можно рассматривать как амфотерные соединения, которые могут проявлять как свойства кислот, так и свойства оснований. Спирты являются слабыми кислотами и в то же время основаниями средней силы.

Рассмотрим важнейшие химические свойства спиртов на примере алифатических насыщенных одноатомных спиртов.

Взаимодействие со щелочными металлами: При взаимодействии щелочных металлов со спиртами (рис. 47) происходит разрыв и замещение атомов водорода на атомы металла с образованием соединений алкоксидов (алкоголятов) и водорода:

Спирты — очень слабые электролиты, слабее даже, чем вода. Поэтому алкокеиды (алкоголяты) легко разлагаются водой:

При взаимодействии с металлами у спиртов проявляются кислотные свойства, но к классу кислот спирты не относят, так как степень их диссоциации незначительна. Поэтому спирты с водными растворами щелочей взаимодействуют обратимо.

Взаимодействие с карбоновыми и кислородсодержащими минеральными кислотами с образованием сложных эфиров.

В реакции с карбоновыми кислотами от молекулы спирта отщепляется атом водорода, а от молекулы карбоновой кислоты — гидроксильная группа с образованием молекулы воды. Реакция обратима, но равновесие смещается вправо в присутствии концентрированной серной кислоты и при выводе воды из зоны реакции:

В реакциях с кислородсодержащими минеральными кислотами спирты образуют сложные эфиры этих кислот:

Взаимодействие с галогеноводородами с образованием галогеналканов

В реакции с галогеноводородами в молекуле спирта происходит разрыв связи В результате реакции образуется галогеналкан. Уравнение реакции в общем виде выглядит так:

Данная реакция обратима. В этой реакции проявляются слабые основные свойства спирта.

При взаимодействии этанола с бромоводородом образуется бромэтан — тяжелая жидкость:

Внутримолекулярная дегидратация с образованием алкена

Первичные спирты дегидратируются под действием катализатора — концентрированной серной кислоты — при высоких температурах (выше 140 °С) с образованием алкена:

Реакция дегидратации обусловлена отщеплением водорода в виде протона и гидроксильной группы от соседних атомов углерода.

Например, в результате внутримолекулярного отщепления молекулы воды от молекулы этанола (под действием катализатора — концентрированной серной кислоты) образуется этен:

Реакции окисления

Спирты горят на воздухе или в кислороде некоптящим пламенем с выделением большого количества теплоты (рис. 48):

С более слабым, чем кислород, окислителем, например с оксидом меди(II), происходит частичное окисление спиртов, при этом первичные спирты окисляются до альдегидов.

Если в пробирку с этанолом опустить раскаленную скрученную в спираль медную проволоку, покрытую черным налетом оксида меди(II), то черный налет на проволоке исчезает. Спираль приобретает розово-красный цвет, при этом чувствуется неприятный запах образовавшегося альдегида:

Под действием таких окислителей, как подкисленный раствор перманганата калия или дихромата калия, первичные спирты окисляются до карбоновых кислот.

Кислотно-основные свойства насыщенных одноатомных спиртов обусловлены наличием в их молекулах функциональной гидроксильной группы.

Спирты взаимодействуют со щелочными металлами, галогеноводородами, карбоновыми и минеральными кислотами; вступают в реакции дегидратации и окисления.

Получение и применение спиртов

Получение: Для промышленного получения спиртов используют ненасыщенные углеводороды, извлекаемые из нефтепродуктов, или галогеналканы.

Познакомимся с основными общими промышленными и лабораторными способами получения насыщенных одноатомных спиртов и специфическими способами получения этанола и метанола.

1) Одним из наиболее важных общих промышленных способов получения спиртов является гидратация алкенов.

Этанол получают гидратацией этена водяными парами при повышенной температуре (280—300 °С), повышенном давлении (7—8 мПа) и в присутствии катализатора

Спирт, полученный из этена, называют синтетическим.

2) В пищевой промышленности этанол получают характерным только для него способом при спиртовом брожении глюкозы под действием ферментов, выделяемых некоторыми видами дрожжевых грибков:

Брожению подвергают виноградный сок, содержащий глюкозу, а также картофельный крахмал, который превращается в глюкозу под действием особого фермента. Этанол, полученный при ферментативном расщеплении различных пищевых продуктов, используют в основном для изготовления спиртных напитков.

В промышленности этанол производят гидролизным способом из древесных опилок, отходов целлюлозно-бумажной промышленности и т. д. Содержащуюся в древесине целлюлозу подвергают гидролизу с образованием глюкозы, которую далее подвергают брожению, и получают этанол, называемый гидролизным спиртом.

3) В промышленности метанол получают характерным только для него способом при взаимодействии водорода с угарным газом (СО) при повышенном давлении и высокой температуре в присутствии катализатора:

Смесь угарного газа и водорода, взятых в количественном соотношении 1 : 2, называют синтез-газом.

Историческое название метанола — древесный спирт. Оно указывает на старый способ получения спирта — сухую перегонку древесины твердых пород дерева (нагревание древесины без доступа воздуха).

Для получения спиртов в лаборатории используют галогеналканы.

При гидролизе моногалогеналканов с галогеном при первичном атоме углерода в водных растворах щелочей при нагревании образуются первичные спирты:

Гидролиз галогеналканов, проводимый в присутствии щелочи, является практически необратимым процессом и используется как общий метод получения первичных насыщенных спиртов в лаборатории.

Применение: Спирты находят широкое применение. В химической промышленности спирты — исходные вещества для разнообразных синтезов. Во многих производствах спирты применяют в качестве растворителей. Рассмотрим несколько примеров промышленного использования важнейших насыщенных одноатомных спиртов.

Метанол (метиловый спирт) используется в промышленном органическом синтезе при получении формальдегида, применяемого в производстве пластмасс, для синтеза некоторых лекарственных веществ.

Метанол — прекрасный растворитель для многих органических и неорганических веществ.

Необходимо знать, что метанол — сильнейший яд. Употребление даже нескольких граммов метанола приводит к слепоте, а затем и смерти. Вот поэтому на банках, в которых хранится этот спирт, используемый для технических нужд, имеется надпись: «Метанол — яд». Это должно служить серьезным предостережением при работе с ним.

Этанол (этиловый спирт) используется во многих отраслях промышленности: лакокрасочной, фармацевтической, взрывчатых веществ, бытовой химии, кондитерской и т. д. (рис. 49).

Этанол является исходным веществом в промышленном органическом синтезе (диэтиловый эфир, этилацетат и другие эфиры и т. д.), окислением этанола получают пищевую уксусную кислоту.

Спирт-ректификат, получаемый в промышленности, представляет собой смесь этанола (массовая доля 95,6 %) и воды (массовая доля 4,4 %). Безводный спирт называют абсолютным спиртом.

Следует помнить, что этанол — своего рода наркотик, возбуждающе действующий на организм человека. Даже небольшие дозы снижают остроту зрения, замедляют реакции и уменьшают способность здраво рассуждать. Длительное употребление спирта вызывает тяжелые заболевания нервной и сердечно-сосудистой систем, разрушение печени и приводит к преждевременной смерти.

В этанол, применяемый для технических целей, специально добавляют небольшие количества трудноотделяемых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют денатуратом. Употребление денатурата смертельно опасно.

Другие (низшие) спирты используются в качестве растворителей при изготовлении различных лаков и красок на предприятиях лакокрасочной промышленности, одним из которых является ОАО «Лакокраска» в Лиде.

Высшие спирты ( и более) используют во многих областях производства. Например, спирты состава используются для изготовления медицинских препаратов, — парфюмерно-косметической продукции, — антикоррозийной смазки.

Ненасыщенный аллиловый спирт применяется в производстве глицерина, аллиловых эфиров, использующихся в фармацевтической и парфюмерной промышленности.

В промышленном масштабе этанол получают гидратацией этена, гидролизным способом, в процессе спиртового брожения глюкозы.

Метанол в промышленных масштабах в основном получают из синтез-газа.

В лаборатории первичные насыщенные одноатомные спирты получают в процессе щелочного гидролиза моногалогеналканов.

Спирты используют для синтеза многих органических веществ.

Решение расчетных задач

В параграфе рассмотрены образцы решения задач таких типов, как расчеты по химическим уравнениям, если одно из реагирующих веществ взято в избытке, и определение молекулярных формул органических веществ на основании качественного и количественного состава.

Определите массу бромэтана, полученного в реакции, для которой был взят этанол массой 5,98 г и бромоводород объемом (н. у.)

1. Общие формулы, используемые при расчетах:

2. Значения молярных масс веществ, молярный объем:

3. Определяем химические количества спирта и бромоводорода, взятых для реакции:

4. На основе анализа уравнения реакции определяем, какое из веществ взято в избытке, а затем рассчитываем химическое количество и массу продукта реакции:

Следовательно, спирт взят в избытке. Расчеты продукта реакции проводятся исходя из данных о химическом количестве хлороводорода:

Ответ:

Массовая доля углерода в насыщенном одноатомном спирте равна 0,6. Определите молекулярную формулу спирта. Составьте структурные формулы возможных изомеров и назовите их по номенклатуре ИЮПАК.

1. Для решения задачи используем общую формулу и общую формулу насыщенных одноатомных спиртов Расчеты проводим, исходя из массы углерода в спирте химическим количеством 1 моль и массы спирта химическим количеством 1 моль.

2. Определяем формулу искомого спирта.

Общая формула следовательно, при молекулярная формула спирта —

Ответ:

В результате ряда последовательных реакций из алкана массой 69,6 г получен первичный насыщенный одноатомный спирт массой 88,8 г с тем же числом атомов углерода в молекуле, что и у алкана (алкан галогеналкан насыщенный одноатомный спирт). Определите молекулярную формулу спирта и составьте формулы структурных изомеров.

1. Из алкана химическим количеством 1 моль получают спирт химическим количеством 1 моль:

2. Разница масс взятого и полученного веществ равна 19,2 г (88,8 — 69,6). Разница молярных масс спирта и алкана равна 16, что хорошо видно при анализе общих формул алканов и насыщенных одноатомных спиртов:

— общая формула насыщенных одноатомных спиртов;

— общая формула алканов.

3. Используя общую формулу определяем химическое количество полученного спирта:

4. Зная химическое количество и массу спирта, определяем его молярную массу и молекулярную формулу:

Решая уравнение

Следовательно, молекулярная формула спирта — а структурные формулы возможных изомеров:

Ответ:

При гидратации алкена массой 22,68 г получили вторичный насыщенный одноатомный спирт массой 32,40 г. Определите молекулярную формулу спирта, составьте структурную формулу и назовите спирт по номенклатуре ИЮПАК.

1. Анализ уравнения реакции гидратации, записанного в общем виде, показывает, что для гидратации алкена химическим количеством 1 моль требуется вода химическим количеством 1 моль. Следовательно, разница масс алкена и спирта и есть масса присоединенной воды:

2. Определяем химическое количество воды и спирта, далее молярную массу и молекулярную формулу спирта:

Следовательно,

Решая уравнение получим:

Молекулярная формула спирта — структурная формула — пропанол-2.

Ответ:

Определите молекулярную формулу органического вещества, относительная плотность паров которого по гелию равна 22, если при сгорании его массой 19,36 г образовались углекислый газ объемом (н. у.) 2 и вода массой 23,76 г.

1. Определяем молярную массу неизвестного вещества, его химическое количество, а также химические количества образовавшихся оксида углерода (IV) и воды:

2. Проанализируем схему реакции горения вещества, предположив, что сожгли углеводород химическим количеством 1 моль. На основе данных о продуктах реакции рассчитаем количественный состав вещества:

Формула вещества —

3. Молярная масса вещества равна 72 г/моль, а молярная масса искомого вещества — 88 г/моль, разница молярных масс — 16 г/моль. Следовательно, в состав неизвестного вещества входил атомарный кислород химическим количеством 1 моль. Молекулярная формула вещества —

Ответ:

Многоатомные спирты

Строение: Производные углеводородов, в молекулах которых два и более атомов водорода у соседних атомов углерода замещены на гидроксильные группы, называют многоатомными спиртами.

Гидроксильные группы во всех устойчивых многоатомных спиртах связаны с соседними атомами углерода.

Простейшим представителем двухатомных спиртов (гликолей) является этиленгликоль, структурная формула которого:

Шаростержневая модель молекулы этиленгликоля приведена на рисунке 50, а.

Простейшим представителем трехатомных спиртов (глицеринов) является глицерин (от греч. glykeros — сладкий), структурная формула которого:

Шаростержневая модель молекулы глицерина приведена на рисунке 50, б.

На примере этих двух спиртов вы познакомитесь с основными характеристиками многоатомных спиртов.

Номенклатура: По номенклатуре ИЮНАК двухатомный спирт и трехатомный спирт называют этанциол-1,2 и про-яянтриол-1,2,3. Правилами ИЮПАК допускаются названия этиленгликоль и глицерин.

Физические свойства: Этиленгликоль и глицерин — бесцветные вязкие жидкости, тяжелее воды, неограниченно растворимы в воде, хорошо растворяются в этаноле. Эти свойства присущи и другим многоатомным спиртам.

Этиленгликоль ядовит, его водные растворы не кристаллизуются при низких температурах, что позволяет применять его как компонент незамерзающих жидкостей — антифризов. Глицерин имеет сладковатый вкус, гигроскопичен, нелетуч.

Впервые глицерин был получен из оливкового масла шведским химиком и фармацевтом К. Шееле в 1783 г.

Хорошая растворимость этиленгликоля и глицерина в воде объясняется наличием межмолекулярных водородных связей между молекулами спиртов и воды. Число таких связей больше, чем у одноатомных спиртов, из-за большего числа гидроксильных групп в молекулах.

Температуры кипения этих спиртов по сравнению с одноатомными спиртами с таким же числом атомов угелерода в молекуле намного выше:

Причиной более высоких температур кипения многоатомных спиртов является большее число межмолекулярных водородных связей между молекулами спиртов за счет большего числа гидроксильных групп в составе молекул.

Химические свойства: Для этиленгликоля и глицерина характерны все реакции одноатомных спиртов, обусловленные наличием функциональной группы —ОН, и особые свойства, обусловленные одновременным присутствием в молекуле нескольких гидроксильных групп.

1) Взаимодействие со щелочными металлами. Многоатомные спирты реагируют с активными металлами с образованием соединений, которые по аналогии с алкоголятами называют гликолятами и глицератами. Названия «гликоляты» и «глицераты» допускаются в номенклатуре ИЮНАК.

В реакциях могут участвовать одна или более гидроксильных групп. Многоатомные спирты, как и одноатомные, проявляют кислотные свойства в реакциях со щелочными металлами.

2) Взаимодействие с основаниями. В отличие от одноатомных спиртов, этиленгликоль и глицерин реагируют не только со щелочными металлами, но и с нерастворимыми гидроксидами тяжелых металлов. Такие реакции возможны для многоатомных спиртов, потому что из-за взаимного влияния гидроксильных групп в молекуле их кислотность выше, чем у одноатомных спиртов.

Если в стакан с раствором щелочи добавить несколько капель раствора сульфата меди(II) и к образовавшемуся гидроксиду меди(II) прилить многоатомный спирт, например глицерин, то образуется прозрачный раствор ярко-синего цвета (рис. 51). Цвет раствора обусловлен образованием комплексного соединения меди.

Реакция со свежеприготовленным гидроксидом меди(II) является качественной реакцией на многоатомные спирты с гидроксильными группами, находящимися у соседних атомов углерода. Из-за сложности строения образовавшегося глицерата меди уравнение реакции не приводится.

3) Образование сложных эфиров. Для многоатомных спиртов, как и для одноатомных, характерно образование сложных эфиров при взаимодействии с кислородсодержащими минеральными кислотами и карбоновыми кислотами. В частности, в реакции глицерина с избытком азотной кислоты в присутствии каталитических количеств серной кислоты образуется глицеринтринитрат, известный под названием нитроглицерин:

Название «нитроглицерин» относится к тривиальным названиям, оно не отражает строение вещества. Известно, что в химии к нитросоединениям относят вещества, в которых группа — непосредственно связана с атомом углерода.

Реакцию глицерина с карбоновыми кислотами е образованием сложных эфиров вы будете рассматривать при изучении темы «Жиры».

Получение: Двухатомные и трехатомные спирты можно получать теми же способами, что и одноатомные спирты. В качестве исходных веществ используются алкены и галогеналканы.

Лабораторные способы: Общим способом получения гликолей является окисление алкенов раствором перманганата калия в слабощелочной или нейтральной среде:

Этиленмиколь также получают гидролизом соответствующего дигалогеналкана:

Промышленные способы. Глицерин получают в процессе гидролиза жиров и синтетическим способом из пропена, образующегося при крекинге нефтепродуктов.

Этиленгликоль в промышленных масштабах получают гидратацией эпоксида который получают при окислении этилена в присутствии катализатора — серебра:

Применение: Этиленгликоль используют для синтеза полимерных материалов, синтетических волокон, например лавсана; в качестве антифризов (от анти — против и англ. freeze — морозить, замерзать) — жидкостей, добавляемых в воду, чтобы понизить температуру замерзания. Антифризы заливаются в системы охлаждения, в частности автомобильных двигателей. Температура замерзания антифриза с объемной долей этиленгликоля 52,5 % равна -40 °С. Этиленгликоль применяют для получения пластификаторов (смягчителей), используемых в лакокрасочной промышленности.

Применение глицерина основано на его гигроскопичности. Его используют для приготовления мазей, в кожевенном производстве — для предохранения кож от высыхания, в текстильной промышленности — для отделки тканей с целью придания им мягкости и эластичности и др. Глицерин применяют при изготовлении косметики, где он играет роль смягчающего и успокаивающего средства; как добавку к зубной пасте, клеям, чтобы предохранить их от быстрого высыхания; для приготовления антифризов.

Незамерзание клеточной жидкости иногда объясняют усиленной выработкой глицерина в растительных клетках.

Большое количество глицерина идет на получение нитроглицерина, который служит сырьем при производстве бездымных порохов и динамита.

Нитроглицерин токсичен, но в малых дозах используется как лечебное средство, так как расширяет кровеносные сосуды сердечной мышцы и тем самым улучшает кровоснабжение сердца.

Многоатомными спиртами называют производные углеводородов, в молекулах которых содержится несколько гидроксильных групп, связанных с соседними атомами углерода.

Многоатомные спирты взаимодействуют с активными металлами, щелочами, гидроксидами тяжелых металлов, кислородсодержащими неорганическими кислотами и карбоновыми кислотами.

Реакция с гидроксидом меди(II) используется для качественного обнаружения многоатомных спиртов.

Этиленгликоль применяют для получения синтетического волокна лавсан, в качестве антифриза; глицерин используется во многих отраслях промышленности.

Рекомендую подробно изучить предметы:
  1. Химия
  2. Неорганическая химия
  3. Органическая химия
Ещё лекции с примерами решения и объяснением:
  • Фенолы в химии
  • Альдегиды в химии
  • Карбоновые кислоты в химии
  • Сложные эфиры в химии
  • Теория химического строения органических соединений А. М. Бутлерова
  • Насыщенные углеводороды
  • Ненасыщенные углеводороды
  • Ароматические углеводороды

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Источник статьи: http://www.evkova.org/spirtyi-v-himii

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *