Меню

Как быстро найти делители числа 5 класс



Математика. 5 класс

Конспект урока

Делители натурального числа

Перечень рассматриваемых вопросов:

— разложение на простые множители.

Кратное число – это число, делящееся на данное целое число без остатка.

Простое число – это такое натуральное число, которое больше 1 и делится только на 1 и само на себя.

Составные числа – это непростые натуральные числа больше 1.

1. Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. ФГОС// С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

1. Чулков П. В. Математика: тематические тесты. 5 кл.// П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. – 142 с.

2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

«Все, что познаётся, имеет число, ибо невозможно ни понять ничего, ни познать без него», – сказал в своё время Пифагор. Эти слова очень кстати подходят к теме нашего урока «Делители натурального числа».

Выясним, что называют делителем.

Если натуральное число а можно разделить на натуральное число b, то это число b и будет делителем натурального числа а.

Мы уже знаем, что натуральные числа бывают простыми и составными.

Рассмотрим делители простых и составных чисел.

У простых чисел только два делителя –единица и само это число.

У составных чисел делителей больше.

Например, 3 – простое число, его делители 1 и 3.

14 – составное число, его делители 1, 2, 7 и 14.

Если делитель – простое число, то его называют простым делителем. Так, в наших примерах простыми делителями являются числа 2, 3, 7.

Можно ли представить любое составное число в виде произведения простых множителей? Ответ однозначный – да. Такое действие в математике называют разложение на простые множители.

Например, 36 – это произведение простых множителей:

Есть и другая форма записи разложения на простые множители любого числа.

Она представляет собой таблицу из двух колонок. В левую часть вначале записывается число, которое нужно разложить на простые множители, а в правую – простые делители этого числа. При этом следующим слева после исходного числа записывается число, которое является частным от деления на простое число справа. Так запись продолжается до тех пор, пока частное от деления не будет единицей.

Например, разложим число 100 на простые множители.

Разделим 100 на 2, частное равно 50;

50 разделим на 2, частное равно 25;

25 разделим на 5, частное равно 5;

5 разделим само на себя, получаем 1.

То есть простые множители числа 100:

100 = 2 · 2 · 5 · 5 = 2 2 · 5 2

Эти множители числа 100 и есть делители этого числа, только добавим ещё единицу и всевозможные произведения простых множителей.

Таким образом, делители числа 100 – это числа 1, 2, 4, 5, 10, 20, 25,100. Других делителей у числа 100 нет.

В дальнейшем нам понадобится ещё одно математическое понятие – кратное.

Кратное число – это число, делящееся на данное целое число без остатка. Иначе говоря, это исходное число, увеличенное в несколько раз.

Например, кратное числа 3 – это числа: 3, т. к. оно больше исходного числа 3 в один раз; 6, т. к. оно больше исходного числа 3 в 2 раза; 9, т. к. оно больше исходного числа 3 в 3 раза и т. д.

Если находить все делители натуральных чисел, то получится интересное свойство, о котором сейчас вы узнаете.

Например, найдём все делители числа 32.

Начиная с середины, все пары чисел при умножении будут давать 32.

Благодаря этому свойству, можно упростить поиск делителей числа. Для этого при поиске делителей достаточно найти «середину», а далее для нахождения остальных делителей числа остаётся найти частное от деления исходного числа на уже найденные делители.

У нас середина – это числа 4 и 8.

Найдём следующие делители:

№ 1. Какую из цифр 2, 3, 4 нужно подставить в число 5_ вместо пропуска, чтобы получить кратное числа 3?

Решение. Вспомним признак делимости на 3.Чтобы число делилось на 3, необходимо, чтобы сумма его цифр делилась на 3. Из представленных цифр подходит только 4, т.к. 5 + 2 = 7 – не делится на 3; 5 + 3 = 8 – не делится на 3; а 5 + 4 = 9 – делится на 3.

№ 2. Разложите произведение на простые множители 25 и 24.

Решение. Разложим отдельно числа 25 и 24 на простые множители, а затем найдём произведение всех полученных простых множителей от 24 и 25.

Источник статьи: http://resh.edu.ru/subject/lesson/7748/conspect/

Делитель и кратное в математике

Что такое делители и кратные числа

Деление — математическое действие, которое определяет, сколько раз одно число содержится в другом. Обратной операцией является умножение.

Выделяют следующие компоненты деления:

  • делимое;
  • делитель;
  • частное.

Определение 2

Делимое — число, которое делят на несколько частей.

Делитель — число, которое показывает, на сколько частей нужно разделить делимое.

Частное — число, которое является результатом деления.

a : b = c , где a — делимое, b — делитель, c — частное.

Умножение частного на делитель дает делимое.

Чтобы получить делитель, нужно делимое разделить на частное.

Д е л и м о е = ч а с т н о е * д е л и т е л ь Д е л и т е л ь = д е л и м о е / ч а с т н о е

Например, нужно поровну разделить 16 мандаринов между двумя детьми. Для этого 16:2=8. Таким образом, каждый ребенок получит по 8 мандаринов.

16 в этом примере является делимым, 2 — делителем, 8 — частным. Шестнадцать поделили на две части, по восемь в каждой. Или восемь содержится в 16 два раза. Или 2 содержится в 16 восемь раз. Деление прошло без остатканацело. Тогда число 2 является делителем числа 16.

Делителем числа a называется такое число b, на которое a делится нацело.

Например, 9 : 4 = 2 (остаток 5 ).

В примере 9 — делимое, 4 — делитель, 2 — неполное частное, 5 — остаток.

Остаток от деления — число, которое меньше делителя. Образуется при делении с остатком. Значит, в примере 9 : 4 = 2 (остаток 5 ) — число 4 не является делителем числа 9.

Задание: найдите такую пару делителей числа 144, если один из делителей равен 2.

Пусть неизвестный делитель равен x. Чтобы найти еще один делитель, если какой-то известен, нужно данное нам число разделить на известный делитель.

Тогда представим решение данной задачи в виде уравнения:

144 : x = 2 ; x = 144 : 2 ; x = 72 .

72 — целое число, без остатка.

Произведение делителей должно дать в результате 144:

72 * 2 = 144 — верно, значит, 72 — корень уравнения и делитель 144.

Ответ: числа 2 и 72 — делители 144.

Число называют кратным, если оно делится на данное число нацело, без остатка.

Тогда число 15 является кратным 3.

Слово «кратно» синонимично слову «делится».

Фразу «15 кратно 3» можно в уме заменить на «15 делится на 3 нацело».

15 д е л и т с я н а к р а т н о 3 .

Основные понятия и определения

Делитель — это число, на которое данное число делится нацело. Делитель всегда меньше или равен числу.

Делится нацело = без остатка.

Наименьшим делителем любого числа является единица.

Наибольшим делителем числа является само число.

Делителем нуля будет любое число, но сам 0 делителем не будет.

При делении нуля на любое число получаем 0. А делить на ноль нельзя.

У единицы только один делитель — единица.

Другие числа, кроме 1, имеют не меньше двух делителей.

Кратное — число, которое делится на данное число нацело. Всегда больше или равно числу.

Наименьшее кратное числа является равным самому числу.

Наибольшее кратное подобрать нельзя, потому что ряд натуральных чисел бесконечен. У любого натурального числа бесконечное множество кратных.

Ноль является кратным для любого числа. При умножении на ноль всегда получается ноль.

Когда одно число делится нацело на другое, то первое число — кратное второго, а второе — делитель первого.

a : b = c , г д е a — к р а т н о е b и b — д е л и т е л ь a .

Чем отличаются друг от друга, как найти

Делитель отличается от кратного тем, что:

  • делитель — это число, НА которое делится заданное число;
  • кратное — это число, которое само ДЕЛИТСЯ НА заданное число.

Чтобы найти делители числа, нужно данное число разложить на множители.

Разложить на множители — представить число в виде произведения целых чисел.

Чтобы проверить, является ли одно число делителем другого, нужно разделить число на данное нам.

Для нахождения кратного числа заданному числу, нужно это число последовательно умножать на натуральные числа. Каждое полученное число будет кратно — будет делиться — заданному.

Делители и кратные связаны между собой. Например, делителем числа 15 является 3 и число, кратное 3, равно 15.

Примеры решения задач

Необходимо найти делители числа 14.

Решить задание можно двумя способами.

Последовательно делим 14 на натуральные числа от 1 до 14. Помним, что делитель всегда меньше или равен заданному числу.

14 : 1 = 14 ; 14 : 2 = 7 ; 14 : 3 = 4 ( о с т а т о к 2 ) ; 14 : 4 = 3 ( о с т а т о к 2 ) ; 14 : 5 = 2 ( о с т а т о к 4 ) ; 14 : 6 = 2 ( о с т а т о к 2 ) ; 14 : 7 = 2 ; 14 : 8 = 1 ( о с т а т о к 6 ) ; 14 : 9 = 1 ( о с т а т о к 5 ) ; 14 : 10 = 1 ( о с т а т о к 4 ; ) 14 : 11 = 1 ( о с т а т о к 3 ) ; 14 : 12 = 1 ( о с т а т о к 2 ) ; 14 : 13 = 1 ( о с т а т о к 1 ) ; 14 : 14 = 1 .

Выбираем такие числа в качестве делителя, при делении на которые мы не получили остаток: 1, 2, 7, 14.

Ответ: делители числа 14: 1, 2, 7, 14.

Представим 14 в виде произведения чисел:

Делителями будут множители, так как можем разделить 14 нацело на каждый из них.

Ответ: делители 14: 1, 2, 7, 14.

Найдите три числа, кратных 7.

Чтобы найти число, кратное данному, нужно это число умножить на любое натуральное число.

7 * 1 = 7 — семь кратно семи;

Ответ: числа, кратные 7: 7, 14, 21.

Самостоятельно проверьте, 225 кратно 3 или нет.

Чтобы проверить, кратно ли одно число другому, нужно разделить числа друг на друга.

75 — целое число, при делении нет остатка. Тогда 225 кратно 3.

Найдите любое число, делителями которого являются числа 7 и 8.

Самый простой способ, если в задании не оговорены еще какие-либо условия, просто перемножить эти делители:

Источник статьи: http://wika.tutoronline.ru/matematika/class/6/delitel-i-kratnoe-v-matematike

Нахождение всех делителей числа, число делителей числа

В данной статье мы поговорим о том, как найти все делители числа. Начнем с доказательства теоремы, с помощью которой можно задать вид всех делителей определенного числа. Далее возьмем примеры нахождения всех нужных делителей и покажем, как именно определить, сколько делителей имеет конкретное число. В последнем пункте подробно рассмотрим примеры задач на нахождение общих делителей нескольких чисел.

Как найти все делители числа

Чтобы понять материал, изложенный в данном пункте, нужно хорошо знать, что вообще из себя представляют кратные числа и делители. Здесь мы поговорим только о поиске делителей натуральных чисел, т.е. целых положительных. Этим можно ограничиться, поскольку свойство делимости гласит, что делители целого отрицательного числа аналогичны делителям целого положительного, которое будет противоположным по отношению к этому числу. Также сразу уточним, что у нуля есть бесконечно большое число делителей, и находить их смысла не имеет, поскольку в итоге все равно получится 0 .

Если речь идет о простом числе, то его можно разделить только на единицу и на само себя. Значит, у любого простого числа a есть всего 4 делителя, два из которых больше 0 и два меньше: 1 , — 1 , a , — a . Возьмем простое число 7 : у него есть делители 7 , — 7 , 1 и — 1 , и все. Еще один пример: 367 – тоже простое число, которое можно разделить лишь на 1 , — 1 , 367 и — 367 .

Сложнее определить все делители составного числа. Сформулируем теорему, которая лежит в основе данного действия.

Допустим, у нас есть выражение, означающее каноническое разложение числа на простые множители, вида a = p 1 s 1 · p 2 s 2 · … · p n s n . Тогда натуральными делителями числа a будут следующие числа: d = p 1 t 2 · p 2 t 2 · … · p n t n , где t 1 = 0 , 1 , … , s 1 , t 2 = 0 , 1 , … , s 2 , … , t n = 0 , 1 , … , s n .

Перейдем к доказательству этой теоремы. Зная основное определение делимости, мы можем утверждать, что a можно разделить на d , если есть такое число q , что делает верным равенство a = d · q , т.е. q = p 1 ( s 1 − t 1 ) · p 2 ( s 2 — t 2 ) · … · p n ( s n — t n ) .

Любое число, делящее a , будет иметь именно такой вид, поскольку, согласно свойствам делимости, других простых множителей, кроме p 1 , p 2 , … , p n , оно иметь не может, а их показатели в данном случае не превысят s 1 , s 2 , … , s n .

Учитывая доказательство этой теоремы, мы можем сформировать схему нахождения всех положительных делителей данного числа.

Для этого нужно выполнить следующие действия:

  1. Выполнить каноническое разложение на простые множители и получить выражение вида a = p 1 s 1 · p 2 s 2 · … · p n s n .
  2. Найти все значения d = p 1 t 2 · p 2 t 2 · … · p n t n , где числа t 1 , t 2 , … , t n будут принимать независимо друг от друга каждое из значений t 1 = 0 , 1 , … , s 1 , t 2 = 0 , 1 , … , s 2 , … , t n = 0 , 1 , … , s n .

Самым трудным в таком расчете является именно перебор всех комбинаций указанных значений. Разберем подробно решения нескольких задач, чтобы наглядно показать применение данной схемы на практике.

Условие: найти все делители 8 .

Разложим восьмерку на простые множители и получим 8 = 2 · 2 · 2 . Переведем разложение в каноническую форму и получим 8 = 2 3 . Следовательно, a = 8 , p 1 = 2 , s 1 = 3 .

Поскольку все делители восьмерки будут значениями p 1 t 1 = 2 t 1 , то t 1 может принять значения нуля, единицы, двойки, тройки. 3 будет последним значением, ведь s 1 = 3 . Таким образом, если t 1 = 0 , то 2 t 1 = 2 0 = 1 , если 1 , то 2 t 1 = 2 1 = 2 , если 2 , то 2 t 1 = 2 2 = 4 , а если 3 , то 2 t 1 = 2 3 = 8 .

Для нахождения делителей удобно все полученные значения оформлять в виде таблицы:

Значит, положительными делителями восьмерки будут числа 1 , 2 , 4 и 8 , а отрицательными − 1 , − 2 , − 4 и − 8 .

Ответ: делителями данного числа будут ± 1 , ± 2 , ± 4 , ± 8 .

Возьмем пример чуть сложнее: в нем при разложении числа получится не один, а два множителя.

Условие: найдите все делители числа 567 , являющиеся натуральными числами.

Начнем с разложения данного числа на простые множители.

567 189 63 21 7 1 3 3 3 3 7

Приведем разложение к каноническому виду и получим 567 = 3 4 · 7 . Затем перейдем к вычислению всех натуральных множителей. Для этого будем присваивать t 1 и t 2 значения 0 , 1 , 2 , 3 , 4 и 0 , 1 , вычисляя при этом значения 3 t 1 · 7 t 2 . Результаты будем вносить в таблицу:

t 1 t 2 3 t 1 · 7 t 2
0 0 3 0 · 7 0 = 1
0 1 3 0 · 7 1 = 7
1 0 3 1 · 7 0 = 3
1 1 3 1 · 7 1 = 21
2 0 3 2 · 7 0 = 9
2 1 3 2 · 7 1 = 63
3 0 3 3 · 7 0 = 27
3 1 3 3 · 7 1 = 189
4 0 3 4 · 7 0 = 81
4 1 3 4 · 7 1 = 567

Ответ: натуральными делителями 567 будут числа 27 , 63 , 81 , 189 , 1 , 3 , 7 , 9 , 21 и 567 .

Продолжим усложнять наши примеры – возьмем четырехзначное число.

Условие: найти все делители 3 900 , которые будут больше 0 .

Проводим разложение данного числа на простые множители. В каноническом виде оно будет выглядеть как 3 900 = 22 · 3 · 52 · 13 . Теперь приступаем к нахождению положительных делителей, подставляя в выражение 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4 значения t 1 , равные 0 , 1 и 2 , t 2 = 0 , 1 , t 3 = 0 , 1 , 2 , t 4 = 0 , 1 . Результаты представляем в табличном виде:

t 1 t 2 t 3 t 4 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4
0 0 0 0 2 0 · 3 0 · 5 0 · 13 0 = 1
0 0 0 1 2 0 · 3 0 · 5 0 · 13 1 = 13
0 0 1 0 2 0 · 3 0 · 5 1 · 13 0 = 5
0 0 1 1 2 0 · 3 0 · 5 1 · 13 1 = 65
0 0 2 0 2 0 · 3 0 · 5 2 · 13 0 = 25
0 0 2 1 2 0 · 3 0 · 5 2 · 13 1 = 325
0 1 0 0 2 0 · 3 1 · 5 0 · 13 0 = 3
0 1 0 1 2 0 · 3 1 · 5 0 · 13 1 = 39
0 1 1 0 2 0 · 3 1 · 5 1 · 13 0 = 15
0 1 1 1 2 0 · 3 1 · 5 1 · 13 1 = 195
0 1 2 0 2 0 · 3 1 · 5 2 · 13 0 = 75
0 1 2 1 2 0 · 3 1 · 5 2 · 13 1 = 975
t 1 t 2 t 3 t 4 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4
1 0 0 0 2 1 · 3 0 · 5 0 · 13 0 = 2
1 0 0 1 2 1 · 3 0 · 5 0 · 13 1 = 26
1 0 1 0 2 1 · 3 0 · 5 1 · 13 0 = 10
1 0 1 1 2 1 · 3 0 · 5 1 · 13 1 = 130
1 0 2 0 2 1 · 3 0 · 5 2 · 13 0 = 50
1 0 2 1 2 1 · 3 0 · 5 2 · 13 1 = 650
1 1 0 0 2 1 · 3 1 · 5 0 · 13 0 = 6
1 1 0 1 2 1 · 3 1 · 5 0 · 13 1 = 78
1 1 1 0 2 1 · 3 1 · 5 1 · 13 0 = 30
1 1 1 1 2 1 · 3 1 · 5 1 · 13 1 = 390
1 1 2 0 2 1 · 3 1 · 5 2 · 13 0 = 150
1 1 2 1 2 1 · 3 1 · 5 2 · 13 1 = 1950
t 1 t 2 t 3 t 4 2 t 1 · 3 t 2 · 5 t 3 · 13 t 4
2 0 0 0 2 2 · 3 0 · 5 0 · 13 0 = 4
2 0 0 1 2 2 · 3 0 · 5 0 · 13 1 = 52
2 0 1 0 2 2 · 3 0 · 5 1 · 13 0 = 20
2 0 1 1 2 2 · 3 0 · 5 1 · 13 1 = 260
2 0 2 0 2 2 · 3 0 · 5 2 · 13 0 = 100
2 1 0 1 2 2 · 3 0 · 5 2 · 13 1 = 1300
2 1 0 0 2 2 · 3 1 · 5 0 · 13 0 = 12
2 1 0 1 2 2 · 3 1 · 5 0 · 13 1 = 156
2 1 1 0 2 2 · 3 1 · 5 1 · 13 0 = 60
2 1 1 1 2 2 · 3 1 · 5 1 · 13 1 = 780
2 1 2 0 2 2 · 3 1 · 5 2 · 13 0 = 300
2 1 2 1 2 2 · 3 1 · 5 2 · 13 1 = 3900

Ответ: делителями числа 3 900 будут: 195 , 260 , 300 , 325 , 390 , 650 , 780 , 975 , 75 , 78 , 100 , 130 , 150 , 156 , 13 , 15 , 20 , 25 , 26 , 30 , 39 , 50 , 52 , 60 , 65 , 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 1 300 , 1 950 , 3 900

Как определить количество делителей конкретного числа

Чтобы узнать, сколько положительных делителей у конкретного числа a, каноническое разложение которого выглядит как a = p 1 s 1 · p 2 s 2 · … · p n s n , нужно найти значение выражения ( s 1 + 1 ) · ( s 2 + 1 ) · … · ( s n + 1 ) . О количестве наборов переменных t 1 , t 2 , … , t n мы можем судить по величине записанного выражения.

Покажем на примере, как это вычисляется. Определим, сколько будет натуральных делителей у числа 3 900 , которое мы использовали в предыдущей задаче. Каноническое разложение мы уже записывали: 3 900 = 2 2 · 3 · 5 2 · 13 . Значит, s 1 = 2 , s 2 = 1 , s 3 = 2 , s 4 = 1 . Теперь подставим значения s 1 , s 2 , s 3 и s 4 в выражение ( s 1 + 1 ) · ( s 2 + 1 ) · ( s 3 + 1 ) · ( s 4 + 1 ) и вычислим его значение. Имеем ( 2 + 1 ) · ( 1 + 1 ) · ( 2 + 1 ) · ( 1 + 1 ) = 3 · 2 · 3 · 2 = 36 . Значит, это число имеет всего 36 делителей, являющихся натуральными числами. Пересчитаем то количество, что у нас получилось в предыдущей задаче, и убедимся в правильности решения. Если учесть и отрицательные делители, которых столько же, сколько и положительных, то получится, что у данного числа всего будет 72 делителя.

Условие: определите, сколько делителей имеет 84 .

Раскладываем число на множители.

Записываем каноническое разложение: 84 = 2 2 · 3 · 7 . Определяем, сколько у нас получится положительных делителей: ( 2 + 1 ) · ( 1 + 1 ) · ( 1 + 1 ) = 12 . Для учета отрицательных нужно умножить это число на 2 : 2 · 12 = 24 .

Ответ: всего у 84 будет 24 делителя – 12 положительных и 12 отрицательных.

Как вычислить общие делители нескольких чисел

Зная свойства наибольшего общего делителя, можно утверждать, что количество делителей некоторого набора целых чисел будет совпадать с количеством делителей НОД тех же чисел. Это будет справедливо не только для двух чисел, но и для большего их количества. Следовательно, чтобы вычислить все общие делители нескольких чисел, надо определить их наибольший общий множитель и найти все его делители.

Разберем пару таких задач.

Условие: сколько будет натуральных общих делителей у чисел 140 и 50 ? Вычислите их все.

Начнем с вычисления НОД ( 140 , 50 ) .

Для этого нам потребуется алгоритм Евклида:

140 = 50 · 2 + 40 , 50 = 40 · 1 + 10 , 40 = 10 · 4 , значит, НОД ( 50 , 140 ) = 10 .

Далее выясним, сколько положительных делителей есть у десяти. Разложим его на простые множители и получим 2 0 · 5 0 = 1 , 2 0 · 5 1 = 5 , 2 1 · 5 0 = 2 и 2 1 · 5 1 = 1 0 . Значит, все натуральные общие делители исходного числа – это 1 , 2 , 5 и 10 , а всего их четыре.

Ответ: данные числа имеют четыре натуральных делителя, равные 10 , 5 , 2 и 1 .

Условие: выясните, сколько общих положительных делителей есть у чисел 585 , 315 , 90 и 45 .

Вычислим их наибольший общий делитель, разложив число на простые множители. Поскольку 90 = 2 · 3 · 3 · 5 , 45 = 3 · 3 · 5 , 315 = 3 · 3 · 5 · 7 и 585 = 3 · 3 · 5 · 13 , то таким делителем будет 5 : НОД ( 90 , 45 , 315 , 585 ) = 3 · 3 · 5 = 3 2 · 5 .

Чтобы узнать количество этих чисел, нужно выяснить, сколько положительных делителей имеет НОД.

НОД ( 90 , 45 , 315 , 585 ) = 3 2 · 5 : ( 2 + 1 ) · ( 1 + 1 ) = 6 .

Ответ: у данных чисел шесть общих делителей.

Источник статьи: http://zaochnik.com/spravochnik/matematika/delimost/nahozhdenie-vseh-delitelej-chisla/

Делители и кратные

В данном уроке мы рассмотрим такие понятия как делители и кратные.

Что такое делитель?

Мы знаем, что делитель это число, показывающее на сколько частей нужно разделить делимое. Например, в выражении 8 : 2 = 4, делителем является число 2. Это число показывает на сколько частей нужно разделить число 8. После разделения получается ответ 4. Как видно из примера, число 8 делится на число 2 без остатка. Говорят, что число 2 является делителем числа 8.

Пример 1. Число 2 является делителем числа 8, поскольку 8 делится на 2 без остатка:

Пример 2. Число 3 является делителем числа 9, поскольку 9 делится на 3 без остатка:

Пример 3. Число 4 не является делителем числа 10 поскольку 10 не делится на 4 без остатка:

Определение. Делителем числа а называется число, на которое число а делится без остатка.

Данное определение содержит переменную a . Подставим вместо этой переменной любое число, например число 12 и прочитаем определение:

Делителем числа 12 называется число, на которое 12 делится без остатка.

Попробуем перечислить эти числа:

Все эти числа являются делителями числа 12, поскольку число 12 делится на них без остатка. Покажем это:

12 : 1 = 12
12 : 2 = 6
12 : 3 = 4
12 : 4 = 3
12 : 6 = 2
12 : 12 = 1

Кратные числа

Если какое-нибудь число без остатка разделилось на другое, то его называют кратным этого числа. Например, 6 без остатка делится на 3. Поэтому 6 является кратным числа 3

Определение. Кратным числа а называется число, которое делится без остатка на а.

Данное определение содержит переменную a . Подставим вместо этой переменной любое число, например число 5 и прочитаем определение:

Кратным числа 5 называется число, которое делится без остатка на 5 .

У любого числа бесконечно много кратных. Например, первыми кратными числа 5, являются числа 5, 10, 15, 20, 25. Все они кратны 5, поскольку делятся на 5 без остатка:

5 : 5 = 1
10 : 5 = 2
15 : 5 = 3
20 : 5 = 4
25 : 5 = 5

Признаки делимости чисел

Признаки делимости чисел используются для того, чтобы ускорить процесс деления чисел. Существует множество признаков делимости и других интересных алгоритмов, значительно ускоряющих решение и освобождающих от излишней волокиты. Рассмотрим наиболее популярные из них.

Признак делимости на 10

Любое число, которое оканчивается нулем, делится без остатка на 10. Чтобы получить частное, достаточно отбросить цифру 0 в делимом.

Например, 380 : 10 = 38. Мы просто отбросили последний ноль в числе 380.

В случае, если мы имеем выражение такого вида 385 : 10, то получится 38 и 5 в остатке, поскольку 380 : 10 = 38, а пятерка это остаток, который не разделился.

Таким образом, если число оканчивается цифрой 0, то оно делится без остатка на 10. Если же оно оканчивается другой цифрой, то оно не делится без остатка на 10. Остаток в этом случае равен последней цифре числа. Действительно, в примере 385 : 10 = 38 (5 в остатке), остаток равен последней цифре в числе 385, то есть пятерке.

Признак делимости на 5 и на 2

Любое число, которое оканчивается нулем, делится без остатка и на 5, и на 2.

Признак делимости на 5

Если число оканчивается цифрой 0 или 5, то оно делится без остатка на 5.

Признак делимости на 3

Число делится на 3, если сумма цифр этого числа делится на 3. Например, рассмотрим число 27, сумма его цифр 2 + 7 = 9. Девять, как мы знаем делится на 3, значит и 27 делится на 3:

Признак делимости на 9

Число делится на 9, если сумма его цифр делится на 9. Например, рассмотрим число 18. Сумма его цифр 1 + 8 = 9. Девять делится на девять, значит и 18 делится на 9

Рассмотрим число 846. Сумма его цифр 8 + 4 + 6 = 18. Восемнадцать делится на девять, значит и 846 делится на 9:

Чётные и нечётные числа

Чётным называется число, которое делится без остатка на 2. Например, число 20 является четным, поскольку оно делится без остатка на 2:

Нечётным называется число, если при его делении на 2, остаётся остаток 1. Например число 21 является нечетным, поскольку после его деления на 2 остается остаток 1:

Как распознать чётное число от нечетного, не выполняя деления на 2? Очень просто. Из однозначных чисел чётными являются числа 0, 2, 4, 6, 8, а нечетными являются 1, 3, 5, 7, 9. Если число оканчивается чётной цифрой, то это число является чётным. Если число оканчивается нечетной цифрой, то это число является нечетным.

Например, число 308 чётно, поскольку оно оканчивается чётной цифрой. Число 1024 тоже четно, поскольку оканчивается четной цифрой.

А числа 305 и 1027 являются нечётными, поскольку они оканчиваются нечётными цифрами.

Простые и составные числа

Простым называется число, которое делится без остатка на единицу и на само себя. Другими словами, имеет только два делителя. Например, число 5 делится без остатка на единицу и на само себя:

Значит, число 5 является простым числом.

Составным же называется число, которое имеет больше двух делителей. Например, число 4 составное, поскольку у него больше двух делителей: 4, 2 и 1

Значит, число 4 является составным числом.

Разложение составного числа на простые множители

Любое составное число можно разложить на простые множители. Чем-то похожим мы занимались в уроке замены в выражениях. Из этого урока мы узнали, что любое число, входящее в выражение, можно заменить на то же самое, но записанное в другом виде.

Например, число 6 можно записать в виде суммы 4 + 2 или в виде частного 12 : 2 или в виде произведения 2 × 3 . Последнюю запись 2 × 3 можно назвать разложением числа 6 на простые множители.

Суть разложения числа на простые множители заключается в том, чтобы представить это число в виде произведения нескольких простых множителей.

Разложим число 4 на простые множители. Для этого соберем данное число из других чисел, при этом соединим их знаком умножения (×). Число 4 состоит из чисел 2 и 2. Эти два числа и являются простыми множителями, из которых состоит число 4

Разложим на множители число 6. Число 6 можно собрать из чисел 2 и 3. Эти два числа и являются простыми множителями, из которых состоит число 6

Разложим на множители число 8. Это число можно разложить на множители 2 и 4, при этом множитель 4 можно разложить на два множителя: 2 и 2 . Поэтому вместо четвёрки записываем её разложение:

Большие числа раскладываются таким же образом. Сначала их раскладывают на большие множители, затем эти большие множители раскладывают на маленькие. И так до тех пор, пока каждый множитель не станет простым числом.

Например, разложим число 180 на простые множители. Число 180 это два множителя 18 и 10

Теперь раскладываем множители 18 и 10 на другие множители:

Теперь раскладываем выделенную синюю шестерку. Это последний большой множитель, который можно разложить на простые множители:

Теперь собираем все простые множители вместе:

На множители можно разложить только составное число. Простое число на множители не раскладывается. Именно поэтому, когда разложение доходит до простых чисел, мы эти простые числа дальше не раскладываем.

Есть и второй способ разложения на простые множители. Он проще и хорошо подходит для больших чисел. Суть этого способа заключается в том, что сначала проводится вертикальная линия. Затем слева от этой линии записываются делимые, а справа — делители, которые впоследствии собирают во множители.

При разложении числа этим способом, используют признаки делимости, такие как: признаки делимости на 2, на 3, на 5 и другие.

Например, разложим предыдущее число 180 этим способом.

Проводим вертикальную линию и слева записываем первое делимое 180

Теперь применяем признаки делимости. В первую очередь проверяем делится ли 180 на 2. Если делится, то нужно записать эту двойку справа от вертикальной линии.

180 делится на 2, поскольку 180 оканчивается нулём. Записываем двойку справа от вертикальной линии:

Теперь делим 180 на 2 и получаем второе делимое 90. Записываем это делимое слева от вертикальной линии:

Теперь делим 90. Снова применяем признаки делимости. Проверяем делится ли 90 на 2.

90 делится на 2, поскольку 90 оканчивается нулём. Записываем двойку справа от вертикальной линии:

Теперь делим 90 на 2, получаем третье делимое 45. Записываем это делимое слева от вертикальной линии:

Теперь делим 45. Снова применяем признаки делимости. Проверяем делится ли 45 на 2.

45 на 2 не делится. Тогда проверяем делится ли 45 на 3.

45 делится на 3, поскольку сумма цифр 4 и 5 делится на 3. Записываем тройку справа от вертикальной линии:

Делим 45 на 3, получаем четвёртое делимое 15. Записываем это делимое слева от вертикальной линии:

Теперь делим 15. Проверяем делится ли 15 на 2.

15 не делится на 2. Тогда проверяем делится ли 15 на 3.

15 на 3 делится, поскольку сумма цифр 1 и 5 делится на 3. Записываем тройку справа от вертикальной линии:

Делим 15 на 3, получаем пятое делимое 5. Записываем пятёрку слева от вертикальной линии:

Теперь делим 5. Проверяем делится ли 5 на 2.

5 не делится на 2. Тогда проверяем делится ли 5 на 3.

5 не делится на 3. Тогда проверяем делится ли 5 на 5.

5 делится на 5. Записываем эту пятёрку справа от вертикальной линии:

Делим 5 на 5, получаем шестое делимое 1. Записываем эту единицу слева от вертикальной линии:

На этом деление завершается, поскольку мы достигли единицы. Делители, которые записывают справа от вертикальной линии должны быть простыми числами. Поэтому, когда делимое 5 не разделилось на 2, а затем не разделилось на 3, мы попробовали разделить его на 5, не пробуя разделить на 4, поскольку 4 является не простым, а составным числом.

Теперь переписываем в один ряд все делители, которые записаны справа от вертикальной линии. Они и будут разложением числа 180 на простые множители. Желательно записывать их, начиная с самых малых. Это позволяет упорядочить их по возрастанию:

Не расстраивайтесь, если будете испытывать затруднения при разложении чисел на простые множители. Эта тема требует немного практики. Для тренировки можете разложить на простые множители следующие числа: 256, 378, 512.

Нахождение делителей числа

В начале данного урока было сказано, что делителем называется число, на которое другое число делится без остатка.

Например, число 2 является делителем числа 6, поскольку число 6 можно без остатка разделить на 2

Ещё делителем числа 6 является число 3

Ещё делителем числа 6 является число 1

Наконец, делителем числа 6 является само это число

Перечислим все делители числа 6

Иногда возникает необходимость найти все делители какого-нибудь числа. Чтобы понять, как это делается, рассмотрим несколько примеров.

Пример 1. Найти делители числа 12

Во-первых, единица является делителем любого числа. Пусть и у нас первым делителем числа 12 будет 1

Теперь раскладываем число 12 на простые множители:

Получили разложение 2 × 2 × 3.

В процессе разложения числа 12 на простые множители, мы делили его на числа 2 и 3. На них число 12 разделилось без остатка, значит они тоже являются делителями числа 12. Внесём эти два числа в нашу таблицу делителей:

Чтобы получить остальные делители числа 12, нужно найти все возможные произведения его простых множителей между собой. Получаемые в результате ответы и будут остальными делителями числа 12.

Число 12 мы разложили на простые множители 2 × 2 × 3. Найдём все возможные произведения этих простых множителей между собой. Первое произведение это 2 × 2. Это произведение равно 4

Занесём число 4 в нашу таблицу делителей

Следующее возможное произведение из простых множителей числа 12 это произведение 2 × 3. Данное произведение равно 6. Занесём число 6 в нашу таблицу делителей:

Последнее возможное произведение из простых множителей числа 12 это произведение из всех его множителей, а именно 2 × 2 × 3. Это произведение равно 12. Занесём число 12 в нашу таблицу делителей:

Таким образом, делителями числа 12 являются числа 1, 2, 3, 4, 6, 12.

На основании приведённого примера можно сформировать правило для нахождения делителей числа:

Чтобы найти делители числа, нужно:

  • записать в качестве первого делителя единицу;
  • разложить исходное число на простые множители и выписать из полученных простых множителей те множители, которые являются делителями исходного числа (если множитель повторяется, то выписать его нужно только один раз);
  • найти все возможные произведения полученных простых множителей между собой. Получаемые в результате ответы будут остальными делителями исходного числа.

Пример 2. Найти делители числа 6

Первым делителем числа 6 запишем единицу:

Теперь разложим число 6 на простые множители:

Выпишем из полученного разложения те множители, которые являются делителями числа 6. Видим, что это множители 2 и 3. Они будут следующими делителями числа 6. Допишем их к нашим делителям:

Теперь найдём все возможные произведения простых множителей числа 6. В данном случае имеется только одно произведение, а именно 2 × 3 . Это произведение равно 6. Допишем число 6 к нашим делителям:

Таким образом, делителями числа 6 являются числа 1, 2, 3, 6 .

Источник статьи: http://spacemath.xyz/deliteli_i_kratnie/

Делитель и кратное в математике

Что такое делители и кратные числа

Деление — математическое действие, которое определяет, сколько раз одно число содержится в другом. Обратной операцией является умножение.

Выделяют следующие компоненты деления:

  • делимое;
  • делитель;
  • частное.

Определение 2

Делимое — число, которое делят на несколько частей.

Делитель — число, которое показывает, на сколько частей нужно разделить делимое.

Частное — число, которое является результатом деления.

a : b = c , где a — делимое, b — делитель, c — частное.

Умножение частного на делитель дает делимое.

Чтобы получить делитель, нужно делимое разделить на частное.

Д е л и м о е = ч а с т н о е * д е л и т е л ь Д е л и т е л ь = д е л и м о е / ч а с т н о е

Например, нужно поровну разделить 16 мандаринов между двумя детьми. Для этого 16:2=8. Таким образом, каждый ребенок получит по 8 мандаринов.

16 в этом примере является делимым, 2 — делителем, 8 — частным. Шестнадцать поделили на две части, по восемь в каждой. Или восемь содержится в 16 два раза. Или 2 содержится в 16 восемь раз. Деление прошло без остатканацело. Тогда число 2 является делителем числа 16.

Делителем числа a называется такое число b, на которое a делится нацело.

Например, 9 : 4 = 2 (остаток 5 ).

В примере 9 — делимое, 4 — делитель, 2 — неполное частное, 5 — остаток.

Остаток от деления — число, которое меньше делителя. Образуется при делении с остатком. Значит, в примере 9 : 4 = 2 (остаток 5 ) — число 4 не является делителем числа 9.

Задание: найдите такую пару делителей числа 144, если один из делителей равен 2.

Пусть неизвестный делитель равен x. Чтобы найти еще один делитель, если какой-то известен, нужно данное нам число разделить на известный делитель.

Тогда представим решение данной задачи в виде уравнения:

144 : x = 2 ; x = 144 : 2 ; x = 72 .

72 — целое число, без остатка.

Произведение делителей должно дать в результате 144:

72 * 2 = 144 — верно, значит, 72 — корень уравнения и делитель 144.

Ответ: числа 2 и 72 — делители 144.

Число называют кратным, если оно делится на данное число нацело, без остатка.

Тогда число 15 является кратным 3.

Слово «кратно» синонимично слову «делится».

Фразу «15 кратно 3» можно в уме заменить на «15 делится на 3 нацело».

15 д е л и т с я н а к р а т н о 3 .

Основные понятия и определения

Делитель — это число, на которое данное число делится нацело. Делитель всегда меньше или равен числу.

Делится нацело = без остатка.

Наименьшим делителем любого числа является единица.

Наибольшим делителем числа является само число.

Делителем нуля будет любое число, но сам 0 делителем не будет.

При делении нуля на любое число получаем 0. А делить на ноль нельзя.

У единицы только один делитель — единица.

Другие числа, кроме 1, имеют не меньше двух делителей.

Кратное — число, которое делится на данное число нацело. Всегда больше или равно числу.

Наименьшее кратное числа является равным самому числу.

Наибольшее кратное подобрать нельзя, потому что ряд натуральных чисел бесконечен. У любого натурального числа бесконечное множество кратных.

Ноль является кратным для любого числа. При умножении на ноль всегда получается ноль.

Когда одно число делится нацело на другое, то первое число — кратное второго, а второе — делитель первого.

a : b = c , г д е a — к р а т н о е b и b — д е л и т е л ь a .

Чем отличаются друг от друга, как найти

Делитель отличается от кратного тем, что:

  • делитель — это число, НА которое делится заданное число;
  • кратное — это число, которое само ДЕЛИТСЯ НА заданное число.

Чтобы найти делители числа, нужно данное число разложить на множители.

Разложить на множители — представить число в виде произведения целых чисел.

Чтобы проверить, является ли одно число делителем другого, нужно разделить число на данное нам.

Для нахождения кратного числа заданному числу, нужно это число последовательно умножать на натуральные числа. Каждое полученное число будет кратно — будет делиться — заданному.

Делители и кратные связаны между собой. Например, делителем числа 15 является 3 и число, кратное 3, равно 15.

Примеры решения задач

Необходимо найти делители числа 14.

Решить задание можно двумя способами.

Последовательно делим 14 на натуральные числа от 1 до 14. Помним, что делитель всегда меньше или равен заданному числу.

14 : 1 = 14 ; 14 : 2 = 7 ; 14 : 3 = 4 ( о с т а т о к 2 ) ; 14 : 4 = 3 ( о с т а т о к 2 ) ; 14 : 5 = 2 ( о с т а т о к 4 ) ; 14 : 6 = 2 ( о с т а т о к 2 ) ; 14 : 7 = 2 ; 14 : 8 = 1 ( о с т а т о к 6 ) ; 14 : 9 = 1 ( о с т а т о к 5 ) ; 14 : 10 = 1 ( о с т а т о к 4 ; ) 14 : 11 = 1 ( о с т а т о к 3 ) ; 14 : 12 = 1 ( о с т а т о к 2 ) ; 14 : 13 = 1 ( о с т а т о к 1 ) ; 14 : 14 = 1 .

Выбираем такие числа в качестве делителя, при делении на которые мы не получили остаток: 1, 2, 7, 14.

Ответ: делители числа 14: 1, 2, 7, 14.

Представим 14 в виде произведения чисел:

Делителями будут множители, так как можем разделить 14 нацело на каждый из них.

Ответ: делители 14: 1, 2, 7, 14.

Найдите три числа, кратных 7.

Чтобы найти число, кратное данному, нужно это число умножить на любое натуральное число.

7 * 1 = 7 — семь кратно семи;

Ответ: числа, кратные 7: 7, 14, 21.

Самостоятельно проверьте, 225 кратно 3 или нет.

Чтобы проверить, кратно ли одно число другому, нужно разделить числа друг на друга.

75 — целое число, при делении нет остатка. Тогда 225 кратно 3.

Найдите любое число, делителями которого являются числа 7 и 8.

Самый простой способ, если в задании не оговорены еще какие-либо условия, просто перемножить эти делители:

Источник статьи: http://wika.tutoronline.ru/matematika/class/6/delitel-i-kratnoe-v-matematike

Делители и кратные

В данном уроке мы рассмотрим такие понятия как делители и кратные.

Что такое делитель?

Мы знаем, что делитель это число, показывающее на сколько частей нужно разделить делимое. Например, в выражении 8 : 2 = 4, делителем является число 2. Это число показывает на сколько частей нужно разделить число 8. После разделения получается ответ 4. Как видно из примера, число 8 делится на число 2 без остатка. Говорят, что число 2 является делителем числа 8.

Пример 1. Число 2 является делителем числа 8, поскольку 8 делится на 2 без остатка:

Пример 2. Число 3 является делителем числа 9, поскольку 9 делится на 3 без остатка:

Пример 3. Число 4 не является делителем числа 10 поскольку 10 не делится на 4 без остатка:

Определение. Делителем числа а называется число, на которое число а делится без остатка.

Данное определение содержит переменную a . Подставим вместо этой переменной любое число, например число 12 и прочитаем определение:

Делителем числа 12 называется число, на которое 12 делится без остатка.

Попробуем перечислить эти числа:

Все эти числа являются делителями числа 12, поскольку число 12 делится на них без остатка. Покажем это:

12 : 1 = 12
12 : 2 = 6
12 : 3 = 4
12 : 4 = 3
12 : 6 = 2
12 : 12 = 1

Кратные числа

Если какое-нибудь число без остатка разделилось на другое, то его называют кратным этого числа. Например, 6 без остатка делится на 3. Поэтому 6 является кратным числа 3

Определение. Кратным числа а называется число, которое делится без остатка на а.

Данное определение содержит переменную a . Подставим вместо этой переменной любое число, например число 5 и прочитаем определение:

Кратным числа 5 называется число, которое делится без остатка на 5 .

У любого числа бесконечно много кратных. Например, первыми кратными числа 5, являются числа 5, 10, 15, 20, 25. Все они кратны 5, поскольку делятся на 5 без остатка:

5 : 5 = 1
10 : 5 = 2
15 : 5 = 3
20 : 5 = 4
25 : 5 = 5

Признаки делимости чисел

Признаки делимости чисел используются для того, чтобы ускорить процесс деления чисел. Существует множество признаков делимости и других интересных алгоритмов, значительно ускоряющих решение и освобождающих от излишней волокиты. Рассмотрим наиболее популярные из них.

Признак делимости на 10

Любое число, которое оканчивается нулем, делится без остатка на 10. Чтобы получить частное, достаточно отбросить цифру 0 в делимом.

Например, 380 : 10 = 38. Мы просто отбросили последний ноль в числе 380.

В случае, если мы имеем выражение такого вида 385 : 10, то получится 38 и 5 в остатке, поскольку 380 : 10 = 38, а пятерка это остаток, который не разделился.

Таким образом, если число оканчивается цифрой 0, то оно делится без остатка на 10. Если же оно оканчивается другой цифрой, то оно не делится без остатка на 10. Остаток в этом случае равен последней цифре числа. Действительно, в примере 385 : 10 = 38 (5 в остатке), остаток равен последней цифре в числе 385, то есть пятерке.

Признак делимости на 5 и на 2

Любое число, которое оканчивается нулем, делится без остатка и на 5, и на 2.

Признак делимости на 5

Если число оканчивается цифрой 0 или 5, то оно делится без остатка на 5.

Признак делимости на 3

Число делится на 3, если сумма цифр этого числа делится на 3. Например, рассмотрим число 27, сумма его цифр 2 + 7 = 9. Девять, как мы знаем делится на 3, значит и 27 делится на 3:

Признак делимости на 9

Число делится на 9, если сумма его цифр делится на 9. Например, рассмотрим число 18. Сумма его цифр 1 + 8 = 9. Девять делится на девять, значит и 18 делится на 9

Рассмотрим число 846. Сумма его цифр 8 + 4 + 6 = 18. Восемнадцать делится на девять, значит и 846 делится на 9:

Чётные и нечётные числа

Чётным называется число, которое делится без остатка на 2. Например, число 20 является четным, поскольку оно делится без остатка на 2:

Нечётным называется число, если при его делении на 2, остаётся остаток 1. Например число 21 является нечетным, поскольку после его деления на 2 остается остаток 1:

Как распознать чётное число от нечетного, не выполняя деления на 2? Очень просто. Из однозначных чисел чётными являются числа 0, 2, 4, 6, 8, а нечетными являются 1, 3, 5, 7, 9. Если число оканчивается чётной цифрой, то это число является чётным. Если число оканчивается нечетной цифрой, то это число является нечетным.

Например, число 308 чётно, поскольку оно оканчивается чётной цифрой. Число 1024 тоже четно, поскольку оканчивается четной цифрой.

А числа 305 и 1027 являются нечётными, поскольку они оканчиваются нечётными цифрами.

Простые и составные числа

Простым называется число, которое делится без остатка на единицу и на само себя. Другими словами, имеет только два делителя. Например, число 5 делится без остатка на единицу и на само себя:

Значит, число 5 является простым числом.

Составным же называется число, которое имеет больше двух делителей. Например, число 4 составное, поскольку у него больше двух делителей: 4, 2 и 1

Значит, число 4 является составным числом.

Разложение составного числа на простые множители

Любое составное число можно разложить на простые множители. Чем-то похожим мы занимались в уроке замены в выражениях. Из этого урока мы узнали, что любое число, входящее в выражение, можно заменить на то же самое, но записанное в другом виде.

Например, число 6 можно записать в виде суммы 4 + 2 или в виде частного 12 : 2 или в виде произведения 2 × 3 . Последнюю запись 2 × 3 можно назвать разложением числа 6 на простые множители.

Суть разложения числа на простые множители заключается в том, чтобы представить это число в виде произведения нескольких простых множителей.

Разложим число 4 на простые множители. Для этого соберем данное число из других чисел, при этом соединим их знаком умножения (×). Число 4 состоит из чисел 2 и 2. Эти два числа и являются простыми множителями, из которых состоит число 4

Разложим на множители число 6. Число 6 можно собрать из чисел 2 и 3. Эти два числа и являются простыми множителями, из которых состоит число 6

Разложим на множители число 8. Это число можно разложить на множители 2 и 4, при этом множитель 4 можно разложить на два множителя: 2 и 2 . Поэтому вместо четвёрки записываем её разложение:

Большие числа раскладываются таким же образом. Сначала их раскладывают на большие множители, затем эти большие множители раскладывают на маленькие. И так до тех пор, пока каждый множитель не станет простым числом.

Например, разложим число 180 на простые множители. Число 180 это два множителя 18 и 10

Теперь раскладываем множители 18 и 10 на другие множители:

Теперь раскладываем выделенную синюю шестерку. Это последний большой множитель, который можно разложить на простые множители:

Теперь собираем все простые множители вместе:

На множители можно разложить только составное число. Простое число на множители не раскладывается. Именно поэтому, когда разложение доходит до простых чисел, мы эти простые числа дальше не раскладываем.

Есть и второй способ разложения на простые множители. Он проще и хорошо подходит для больших чисел. Суть этого способа заключается в том, что сначала проводится вертикальная линия. Затем слева от этой линии записываются делимые, а справа — делители, которые впоследствии собирают во множители.

При разложении числа этим способом, используют признаки делимости, такие как: признаки делимости на 2, на 3, на 5 и другие.

Например, разложим предыдущее число 180 этим способом.

Проводим вертикальную линию и слева записываем первое делимое 180

Теперь применяем признаки делимости. В первую очередь проверяем делится ли 180 на 2. Если делится, то нужно записать эту двойку справа от вертикальной линии.

180 делится на 2, поскольку 180 оканчивается нулём. Записываем двойку справа от вертикальной линии:

Теперь делим 180 на 2 и получаем второе делимое 90. Записываем это делимое слева от вертикальной линии:

Теперь делим 90. Снова применяем признаки делимости. Проверяем делится ли 90 на 2.

90 делится на 2, поскольку 90 оканчивается нулём. Записываем двойку справа от вертикальной линии:

Теперь делим 90 на 2, получаем третье делимое 45. Записываем это делимое слева от вертикальной линии:

Теперь делим 45. Снова применяем признаки делимости. Проверяем делится ли 45 на 2.

45 на 2 не делится. Тогда проверяем делится ли 45 на 3.

45 делится на 3, поскольку сумма цифр 4 и 5 делится на 3. Записываем тройку справа от вертикальной линии:

Делим 45 на 3, получаем четвёртое делимое 15. Записываем это делимое слева от вертикальной линии:

Теперь делим 15. Проверяем делится ли 15 на 2.

15 не делится на 2. Тогда проверяем делится ли 15 на 3.

15 на 3 делится, поскольку сумма цифр 1 и 5 делится на 3. Записываем тройку справа от вертикальной линии:

Делим 15 на 3, получаем пятое делимое 5. Записываем пятёрку слева от вертикальной линии:

Теперь делим 5. Проверяем делится ли 5 на 2.

5 не делится на 2. Тогда проверяем делится ли 5 на 3.

5 не делится на 3. Тогда проверяем делится ли 5 на 5.

5 делится на 5. Записываем эту пятёрку справа от вертикальной линии:

Делим 5 на 5, получаем шестое делимое 1. Записываем эту единицу слева от вертикальной линии:

На этом деление завершается, поскольку мы достигли единицы. Делители, которые записывают справа от вертикальной линии должны быть простыми числами. Поэтому, когда делимое 5 не разделилось на 2, а затем не разделилось на 3, мы попробовали разделить его на 5, не пробуя разделить на 4, поскольку 4 является не простым, а составным числом.

Теперь переписываем в один ряд все делители, которые записаны справа от вертикальной линии. Они и будут разложением числа 180 на простые множители. Желательно записывать их, начиная с самых малых. Это позволяет упорядочить их по возрастанию:

Не расстраивайтесь, если будете испытывать затруднения при разложении чисел на простые множители. Эта тема требует немного практики. Для тренировки можете разложить на простые множители следующие числа: 256, 378, 512.

Нахождение делителей числа

В начале данного урока было сказано, что делителем называется число, на которое другое число делится без остатка.

Например, число 2 является делителем числа 6, поскольку число 6 можно без остатка разделить на 2

Ещё делителем числа 6 является число 3

Ещё делителем числа 6 является число 1

Наконец, делителем числа 6 является само это число

Перечислим все делители числа 6

Иногда возникает необходимость найти все делители какого-нибудь числа. Чтобы понять, как это делается, рассмотрим несколько примеров.

Пример 1. Найти делители числа 12

Во-первых, единица является делителем любого числа. Пусть и у нас первым делителем числа 12 будет 1

Теперь раскладываем число 12 на простые множители:

Получили разложение 2 × 2 × 3.

В процессе разложения числа 12 на простые множители, мы делили его на числа 2 и 3. На них число 12 разделилось без остатка, значит они тоже являются делителями числа 12. Внесём эти два числа в нашу таблицу делителей:

Чтобы получить остальные делители числа 12, нужно найти все возможные произведения его простых множителей между собой. Получаемые в результате ответы и будут остальными делителями числа 12.

Число 12 мы разложили на простые множители 2 × 2 × 3. Найдём все возможные произведения этих простых множителей между собой. Первое произведение это 2 × 2. Это произведение равно 4

Занесём число 4 в нашу таблицу делителей

Следующее возможное произведение из простых множителей числа 12 это произведение 2 × 3. Данное произведение равно 6. Занесём число 6 в нашу таблицу делителей:

Последнее возможное произведение из простых множителей числа 12 это произведение из всех его множителей, а именно 2 × 2 × 3. Это произведение равно 12. Занесём число 12 в нашу таблицу делителей:

Таким образом, делителями числа 12 являются числа 1, 2, 3, 4, 6, 12.

На основании приведённого примера можно сформировать правило для нахождения делителей числа:

Чтобы найти делители числа, нужно:

  • записать в качестве первого делителя единицу;
  • разложить исходное число на простые множители и выписать из полученных простых множителей те множители, которые являются делителями исходного числа (если множитель повторяется, то выписать его нужно только один раз);
  • найти все возможные произведения полученных простых множителей между собой. Получаемые в результате ответы будут остальными делителями исходного числа.

Пример 2. Найти делители числа 6

Первым делителем числа 6 запишем единицу:

Теперь разложим число 6 на простые множители:

Выпишем из полученного разложения те множители, которые являются делителями числа 6. Видим, что это множители 2 и 3. Они будут следующими делителями числа 6. Допишем их к нашим делителям:

Теперь найдём все возможные произведения простых множителей числа 6. В данном случае имеется только одно произведение, а именно 2 × 3 . Это произведение равно 6. Допишем число 6 к нашим делителям:

Таким образом, делителями числа 6 являются числа 1, 2, 3, 6 .

Источник статьи: http://spacemath.xyz/deliteli_i_kratnie/

Теория чисел. Делители и кратные

В школе даются начальные знания по основным наукам. Огромную роль играет математика. Она используется не только при расчетах, но и в программировании.

В данной статье рассмотрена теория чисел. Она является своеобразной «базой», помогающей более подробно рассматривать математические действия и операции. В ней особую роль играют делители чисел. Зная о них, можно достаточно быстро и точно провести большинство операций. Пример – посчитать дроби и выделить грамотно доли.

Определение

Делители чисел – это такие значения, при делении на которые у «первоначального» числового компонента не будет остатка. Является целым в обязательном порядке. Пример – у 21 два делителя: 3 и 7. Проверить это можно по таблице умножения, которая изучается в начальных классах. Других упомянутых компонентов к 21 нет. В остальных случаях при делении будет получаться остаток.

Кратные

С делителями чисел познакомились. Теперь стоит обратить внимание на еще один момент, изучаемый в младших классах. Речь идет о кратных.

Краткое – это ситуация, при которой какое-нибудь значение удалось поделить без остатка на другое. Кратным a будет называться значение, которое без остатка делится на a.

Каждая «цифра» в математике имеет бесконечно много кратных. Пример – 5. Сюда можно отнести: 5, 10, 15, 20, 25, 100, 1005 и так далее. Все они будут без остатка делиться на пятерку.

В начальных классах учителя говорят, что в математике есть простые числа и составные. Тут необходимо запомнить:

  1. Простые – это натуральное число, которое делится только на себя и единицу.
  2. Единица не включена в ряд простых.
  3. Составное число – это непростой элемент в математике. Единица сюда тоже не включена. Имеет несколько делителей. Согласно информации, подаваемой в начальных классах – больше двух.

Если интересует, сколько делителей у простого заданного числа, ответ будет очевиден – их всего два. И найти таковые проще простого. Эта информация очевидна из самого определения.

Составные числа могут иметь бесконечное количество делителей. Ответить, сколько именно, невозможно – все зависит от конкретной ситуации. Главное – чтобы их в конечном итоге оказалось больше двух.

В программировании найти «простую цифру» достаточно легко. Операция с легкостью проводится за O(N), где N – это проверяемый элемент. Достаточно проверить, будет ли оно делиться без остатка хотя бы на один элемент среди цепочки: 2, 3, 4, …, N-1. В школьных классах соответствующая информация не изучается. Она пригодится непосредственным программистам.

Вот – пример реализации. Этот код нужно просто обработать компилятором и посмотреть на выданные результаты. N – подставить свое значение.

Делимость – признаки

В разных классах начальной школы (иногда – в среднем звене) активно рассматриваются не только делители числа, но и признаки делимости. Эта информация тоже включена в рассматриваемую теорию. Она помогает найти простые делители заданного числа намного быстрее. А еще – понять, простое оно или сложное. Узнать количество делителей, которые имеют числа, будет намного проще.

На десятку

Если «цифра» заканчивается на 0, она может делиться без остатка на 10. Это – правило, которое нужно запомнить в младших классах. Обычно такие элементы относятся к сложным/составным. Об этом учителя говорят еще в начальных классах. Связано это с тем, что «цифра», которая делится на 10, обычно может быть поделена:

Из ранее изученных определений следует достоверность последнего утверждения.

Делимость на 5 и 2

Теперь стоит изучить более сложные варианты. Они тоже рассматриваются в начальных классах и позволяют понять, сколько делителей будет у «цифры», заданной в примере. Среди основных знаний, которые нужно освоить в начальной школе, выделяют признаки делимости на двойку и пятерку.

Тут в начальных классах требуется запомнить, что:

  1. Любая «цифра», которая заканчивается на 0, делится без остатка на 5 и 2.
  2. Если в конце стоит 0 или 5, то возможно деление без остатков на «пятерку».
  3. Когда «цифра» заканчивается на 0, 2, 4, 6, 8 – оно будет делиться на 2. Остаток не предусматривается.

Все это поможет быстрее найти делитель числа в начальных классах. Но есть и иные признаки делимости. Они тоже необходимы для нахождения рассматриваемых элементов.

Согласно установленным правилам, если сумма цифр в заданном элементе делится на 3, то все оно тоже разделяется без остатка на «тройку». Пример – 27. Сумма его составляющих будет равна 9. Оно делится на 3. Отсюда следует, что 27 при делении на «тройку» остатка не образовывается.

Рассматривая делители числа, стоит обратить внимание на еще один признак делимости. Речь идет о 9. Если сумма цифр в заданном компоненте делится на «девятку», то и все оно тоже не образовывает остатка вследствие выполняемых математических манипуляций. Соответствующий принцип тоже изучается в младших классах.

Разложение на множители

Разложение на простые множители – еще одна операция, которая изучается в рассматриваемой теории в начальных классах. Можно провести разложение любого натурального числа, которое входит в заданное выражение им же, но представленном в ином виде. Для этого требуется изучить делители чисел. Они пригодятся в соответствующей операции.

Суть приема заключается в том, что нужно представить «цифру» в виде произведения нескольких простых множителей (делителей заданных чисел). Пример – дана «шестерка». Находим делители этого числа. Справиться с соответствующей задачей сможет ученик младших классов:

В поиске натуральных множителей теперь не будет никаких проблем. И в представлении «цифры» соответствующей записью – тоже. Шестерка – это 3*2 и 6*1.

Стоит обратить внимание – согласно правилам, продиктованным математикой в начальных классах, разложить на множители удастся только составную «цифру». У него будет простой делитель натурального заданного числа. Простая заданная «цифра» не подлежит разложению.

Данный вариант разложения – элементарный. Его легко освоить даже в начальных классах, после изучения таблицы умножения. Подходит для небольших «цифр». Когда дело доходит до больших значений, стоит воспользоваться иным методом:

  1. Провести вертикальную линию.
  2. Слева написать делимые.
  3. Справа прописать делители заданного числа.
  4. Собрать полученные сведения во множители.

Правила, изучаемые в начальных классах, указывают на то, что тут на помощь приходят признаки делимости.

Выше – пример реализации приема с числом 180.

Правило обнаружения делителей

Чтобы найти простые делители числа, в начальных классах необходимо запомнить следующий принцип (правило):

  1. Записать в качестве первого делителя единицу.
  2. Исходный элемент разложить на простые множители.
  3. Выписать из соответствующих делителей те, на которые без остатка делится заданная изначально «цифра». При повторении повторно записывать его не потребуется.
  4. Отыскать все произведения полученных простых множителей между собой.

Полученные ответы – это остальные искомые компоненты. Если этот принцип усвоить в младших классах школы, удастся достаточно быстро разобраться в математике и счете.

Дроби

Ближе к средним классам школьная программа начинает предлагать дроби. Там рассмотренная тема будет особо актуальна. Одно и то же число можно записать десятично (15 – 3*5) и в виде дроби.

  • числитель – то, что написано над чертой-разделителем;
  • знаменатель – нижняя часть записи.

Чтобы в любом классе без проблем привести дроби к общему знаменателю, потребуется:

  1. Найти общее кратное знаменателей. Эта запись будет общим знаменателем.
  2. Разделить общий знаменатель на знаменатель каждой отдельно взятой дроби. Получится дополнительный множитель.
  3. Умножить числитель каждой дроби на дополнительный множитель.

Лишь после этого можно проводить сложение и вычитание дробей. Соответствующая информация пригодится в любом классе школы и даже во взрослой жизни при разнообразных вычислениях.

Хотите освоить современную IT-специальность? Огромный выбор курсов по востребованным IT-направлениям есть в Otus!

Источник статьи: http://otus.ru/journal/teoriya-chisel-deliteli-i-kratnye/

Делители и кратные натуральных чисел: НОД и НОК

В статье рассмотрим делители и кратные натуральных чисел:
➤ понятие делителей и кратных чисел;
➤ простые и составные числа, признаки делимости;
➤ разложение составного числа на множители;
➤ нахождение делителей числа;
➤ НОД (наибольший общий делитель) и НОК (наименьшее общее кратное).

➤ Понятие: делители и кратные чисел

Делитель — это число, на которое нужно разделить.
Пример 1. В выражении 21 : 7 = 3, делителем является число 7, потому что число 21 делится на число 7 без остатка).
Пример 2. Число 12 делится без остатка на числа 1, 2, 3, 4, 6, 12. Поэтому все эти числа являются делителями числа 12.

Кратное — это число, которое без остатка делится на другое число.
Пример 1. Число 6 делится на 3 без остатка. Поэтому 6 является кратным числа 3.
Пример 2. Кратными числа 5 являются числа 5, 10, 15, 20, 25 и т.д.. Все они кратны 5, поскольку делятся на 5 без остатка. У любого числа бесконечно много кратных.

Простые и составные числа

Простым называется число, которое делится без остатка на единицу и на само себя. Другими словами, имеет только два делителя. Например, число 5 делится без остатка на единицу и на само себя. Значит, число 5 является простым числом.

Последовательность простых чисел начинается так : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

Составным называется число, которое имеет два и более делителя. Например, число 4 составное, поскольку у него более 2 делителей: 1, 2 и 4. Значит, число 4 является составным числом.

Признаки делимости чисел

Признаки делимости чисел используются для того, чтобы ускорить процесс деления чисел. Рассмотрим наиболее популярные из них.

Признак делимости на 2
Любое четное число делится на 2.

  • Четным называется число, которое делится без остатка на 2 (например, 0, 2, 4, 6, 8, 10 и т.д.)
  • Нечетным называется число, если при его делении на 2, остаётся остаток 1 (например, 1, 3, 5, 7, 9 и т.д.)

Признак делимости на 10
Любое число, которое оканчивается нулем, делится без остатка на 10.

Признак делимости на 5
Любое число, которое оканчивается на 0 или 5, делится на 5.

Признак делимости на 3
Число делится на 3, если сумма цифр этого числа делится на 3. Например, рассмотрим число 27. Сумма его цифр равна 9 (2 + 7 = 9). Девять делится на 3, значит 27 делится на 3.

Признак делимости на 9
Число делится на 9, если сумма его цифр делится на 9. Например, рассмотрим число 18. Сумма его цифр равна 9 (1 + 8 = 9). Девять делится на девять, значит 18 делится на 9.

Разложение составного числа на простые множители

Любое составное число можно разложить на простые множители, то есть представить это число в виде произведения нескольких простых множителей.
Например: 18 = 2 × 3 × 3, 210 = 2 × 3 × 5 × 7
Большие числа раскладываются таким же образом. Сначала их раскладывают на большие множители, затем эти большие множители раскладывают на маленькие. И так до тех пор, пока каждый множитель не станет простым числом.
Например: 180 = 18 × 10 = 3×6 × 5×2 = 3 × 2×3 × 5×2.

Удобно раскладывать составное число на простые множители по схеме: проводится вертикальная линия. Слева от этой линии записываются делимые, а справа — делители, которые впоследствии собирают во множители. При разложении числа этим способом, используют признаки делимости.

Когда в итоге получена единица, деление завершается. При этом нужно проверить, чтобы делители, записанные справа от вертикальной линии, были простыми числами.

Нахождение делителей числа

Иногда возникает необходимость найти все делители какого-нибудь числа. Чтобы понять, как это делается, рассмотрим пример.

Пример 1. Найти делители числа 12.
Чтобы понять, как эти получаются делители, разложим число 12 на простые множители: 12=2×2×3.
Таким образом, мы получили делители числа 12: 1, 2, 3 и 12.
Чтобы получить остальные делители числа 12, нужно найти все возможные произведения его простых множителей между собой: 2×2=4, 2×3=6.
Таким образом, делителями числа 12 являются числа 1, 2, 3, 4, 6, 12.

На основании примера можно сформировать правило для нахождения делителей числа:

  • записать в качестве первого делителя единицу;
  • разложить исходное число на простые множители;
  • найти все возможные произведения полученных простых множителей между собой.

НОД — наибольший общий делитель.

Наибольший общий делитель (НОД) чисел a и b — это наибольшее число, на которое a и b делятся без остатка.

Пример. Найдем НОД для чисел 18 и 24.
Наибольшим общим делителем чисел 12 и 9 называется наибольшее число, на которое 12 и 9 делятся без остатка. Причем делитель является наибольшим из всех существующих делителей.
Чтобы найти НОД, нужно разложить оба числа на простые множители и перемножить общие из них:
1) 18 = 2 × 3 × 3
2) 24 = 2 × 2 × 2 × 3
Перемножим их общие множители. Чтобы не запутаться, общие множители можно подчеркнуть.
Общими множителями чисел 24 и 18 являются множители 2 и 3. Чтобы получить НОД, эти множители необходимо перемножить: 2 × 3 = 6
Получаем: НОД (24, 18) = 6

Наибольший общий делитель можно также находить для нескольких чисел, а не только для двух. Для этого все числа раскладывают на простые множители, затем находят произведение общих простых множителей этих чисел.

Например. Найдём НОД для чисел 18, 24 и 36
1) 18 = 2 × 3 × 3
2) 24 = 2 × 2 × 2 × 3
3) 36 = 2 × 2 × 3 × 3
Общие множители для чисел 18, 24 и 36 — это 2 и 3. Эти множители входят во все три разложения.
Получаем: НОД (24, 18, 36) = 6

НОК — наименьшее общее кратное.

Наименьшее общее кратное (НОК) чисел a и b — это наименьшее число, которое кратно a и b. Другими словами, это самое маленькое число, которое делится без остатка на число a и число b.

Пример. Найдем НОК для чисел 9 и 12.
Наименьшее общее кратное (НОК) для чисел 9 и 12 — это наименьшее число, которое делится на 9 и 12.
Чтобы найти НОК, нужно разложить оба числа на простые множители.
1) 9 = 3 × 3
2) 12=2 × 2 × 3
Затем выписываются все множители, входящие в первое разложение ( 3 × 3) и добавляют недостающие множители из второго разложения (2 × 2). Полученные множители перемножают и получают НОК.
Получаем: 3 × 3 × 2 × 2 = 36 ➤ НОК (9, 12) = 36

На сайте также есть калькулятор для нахождения НОД и НОК (для самоконтроля).

Источник статьи: http://intmag24.ru/dlya-shkolnikov/deliteli-i-kratnye/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *